
1

Texture Filtering

MipMaps

“Optimal” case

Minification Magnification

Magnification and
Minification

Texture Polygon

Magnification Minification

PolygonTexture

More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

Pixel Footprint

2

Pyramid Textures (Mipmapping)

… …

Linear vs. Nearest Trilinear

3

Mipmapped Textures

• Mipmapping allows for prefiltered texture maps
of decreasing resolutions

• Lessens interpolation errors for smaller
textured objects

• Declare mipmap level during texture definition
glTexImage2D(GL_TEXTURE_*D, level, …
)

• GLU mipmap builder routines will build all the
textures from a given image
gluBuild*DMipmaps(…)

Example

point
sampling

mipmapped
point

sampling

mipmapped
linear
filtering

linear
filtering

Demo

Anisotropic Filtering Anisotropic Filtering

Anisotropic Filtering

4

Light Mapping

• In order to keep the texture and light maps
separate, we need to be able to perform
multitexturing – application of multiple
textures in a single rendering pass

Light Mapping

• How do you create light maps?
• Trying to create a light map that will be used on

a non-planar object things get complex fast:
– Need to find a divide object into triangles with similar

orientations

– These similarly oriented triangles can all be mapped
with a single light map

Light Mapping

• Things for standard games are usually much
easier since the objects being light mapped are
usually planar:
– Walls

– Ceilings

– Boxes

– Tables

• Thus, the entire planar object can be mapped
with a single texture map

Light Mapping

Light Mapping

• Can dynamic lighting be simulated by
using a light map?

• If the light is moving (perhaps attached to the
viewer or a projectile) then the lighting will
change on the surface as the light moves
– Moving ‘flashlight’ (use texture matrix)
– The light map values can be partially updated

dynamically as the program runs
– Several light maps at different levels of intensity could

be pre-computed and selected depending on the
light’s distance from the surface

Lightmaps

• Creating local contribution

Unlit Scene Lightmap Intensity Local Light
Contribution

Lightmap

5

Lightmaps

• Adding local light to scene

• Demo
OpenGL Lighting Combined Image

Lightmaps
• Cached Lighting Results

– Reuse lighting calculations
• Multiple local lights (same type)

• Static portion of scene’s light field

• Sample region with texture instead of tessellating

– Low resolution sampling
• Local lighting; rapid change over small area

• Global lighting; slow change over large area

Lightmaps

• Segmenting Scene Lighting
– Static vs. dynamic light fields

– Global vs. local lighting

– Similar light shape

Lightmaps

• Segmenting the lighting

Dominant Lighting Local lighting

Lightmaps

• Moving Local Lights
– Recreate the texture; simple but slow

– Manipulate the lightmap
• Translate to move relative to the surface

• Scale to change spot size

• Change base polygon color to adjust intensity

– Projective textures ideal for spotlights

– 3D textures easy to use (if available)

Spotlights as Lightmap
Special Case

• Mapping Single Spotlight Texture Pattern

Use texture matrix to perform spotlight
texture coordinates transformations.

Translate
Spotlight
Texture

Coordinates

Scale
Spotlight
Texture

Coordinates

Change Base
Polygon
Intensity

Original

6

Lightmaps

• Creating a lightmap
– Light white, tesselated surface with local light

– Render, capture image as texture

– Texture contains ambient and diffuse lighting

– glLight() parameters should match light

– Texture can also be computed analytically

Lightmaps

• Creating a lightmap

Render surface
lit by local light

Create a Texture
Map from Image

Lightmaps

• Lightmap building tips

Boundary should have
constant value

Intensity changes from
light should be minimal
near edge of lightmap

Lightmaps

• Lighting with a Lightmap
– Local light is affected by surface color and

texture

– Two step process adds local light contribution:
• Modulate textured, unlit surfaces with lightmap

• Add locally lit image to scene

– Can mix OpenGL, lightmap lighting in same
scene

Lightmaps

• Creating local contribution

Unlit Scene Lightmap Intensity Local Light
Contribution

Lightmap

Lightmaps

• Adding local light to scene

OpenGL Lighting Combined Image

7

Lightmaps in Quake2


(modulate)

=

lightmaps onlylightmaps only decal onlydecal only

combined scenecombined scene

Packing Many Lightmaps
into a Single Texture

• Quake 2 light map texture image example• Quake 2 light map texture image example

– Lightmaps typically
heavily magnified.

– Permits multiple
lightmaps packed into a
single texture.

– Quake 2 computes
lightmaps via off-line
radiosity solver.

– Lightmaps typically
heavily magnified.

– Permits multiple
lightmaps packed into a
single texture.

– Quake 2 computes
lightmaps via off-line
radiosity solver.

Lightmaps

• Lightmap considerations
– Lightmaps are good:

• Under-tessellated surfaces

• Custom lighting

• Multiple identical lights

• Static scene lighting

Lightmaps

• Lightmap considerations
– Lightmaps less helpful:

• Highly tessellated surfaces

• Directional lights

• Combine with other surface effects (e.g. bump-
mapping)
– eats a texture unit/access in fragment programs

– may need to go to multi-pass rendering (fill-bound app)

Multitexturing

• Multitexturing allows the use of multiple textures at one time.

• It is a standard feature of OpenGL 1.3 and later.

• An ordinary texture combines the base color of a polygon with
color from the texture image. In multitexturing, this result of
the first texturing can be combined with color from another
texture.

• Each texture can be applied with different texture coordinates.

+ +

=

8

Texture Units
• Multitexturing uses multiple texture units.

• A texture unit is a part of the rendering pipeline that applies one texture to whatever is
being drawn.

• Each unit has a texture, a texture environment, and optional texgen mode. That is,
its own complete and independent OpenGL texture state

• Most current hardware has from 2 to 16 texture units.

• To get the number of units available: glGetIntegerv(GL_MAX_TEXTURE_UNITS)

Texture Units

• Texture units are named GL_TEXTURE0, GL_TEXTURE1,
etc.

• The unit names are used with two new functions.

• glActiveTexture(texture_unit)
– selects the current unit to be affected by texture calls (such as

glBindTexture, glTexEnv, glTexGen).

• glMultiTexCoord2f(texture_unit, s, t)
– Sets texture coordinates for one unit

OpenGL Multitexture Quick Tutorial
– Configuring up a given texture unit:

tex1_uniform_loc = glGetUniformLocation(prog, “tex1”);
– glUniform1i(tex1_uniform_loc, 1);

glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texObject);
glTexImage2D(GL_TEXTURE_2D, …);
glTexParameterfv(GL_TEXTURE_2D, …);
glTexEnvfv(GL_TEXTURE_ENV, …);
glTexGenfv(GL_S, …);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();

– Setting texture coordinates for a vertex:
glMultiTexCoord4f(GL_TEXTURE0, s0, t0, r0 ,q0);
glMultiTexCoord2f(GL_TEXTURE1, s1, t1);
glMultiTexCoord3f(GL_TEXTURE2, s2, t2, r2);
glVertex3f(x, y, z);

update
state of
active
texture
unit

Sets active texture unit

OpenGL Multitexture Texture
Environments (old way)

• Chain of Texture Environment Stages

GL_MODULATE

GL_DECAL

GL_BLEND

glMultiTexCoord2f(
GL_TEXTURE0_ARB, …)

glMultiTexCoord2f(
GL_TEXTURE1_ARB, …)

glMultiTexCoord2f(
GL_TEXTURE2_ARB, …)

Pre-texturing color
glColor3f(r,g,b)

#0

#1

#2
Post-texturing
color

Lookup
& filter

Lookup
& filter

Lookup
& filter

OpenGL Multitexture Texture
Environments (new way)

• Chain of Texture Environment Stages:
put it in the shaders!

varying vec3 lightDir, normal;
void main(){

gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;
gl_Position = ftransform();

}

varying vec3 lightDir, normal;
uniform sampler2D tex0, tex1;
void main(){

vec3 ct, cf;
vec4 texel;
float intensity, at, af;
intensity = max(dot(lightDir, normalize(normal)),0.0);
cf = intensity * gl_FrontMaterial.diffuse.rgb + gl_FrontMaterial.ambient.rgb;
af = gl_FrontMaterial.diffuse.a
texel = texture2D(tex0,gl_TexCoord[0].st) + texture2D(tex0,gl_TexCoord[1].st);
ct = texel.rgb;
at = texel.a;
gl_FragColor = vec4(ct*cf, at*af);

}

Detail Texture

+ =

9

Multitexture Lightmapping

+ =

Alpha Mapping

• An Alpha Map contains a single value with
transparency information
– 0  fully transparent
– 1  fully opaque

• Can be used to make sections of objects
transparent

• Can be used in combination with standard
texture maps to produce cutouts
– Trees
– Torches

Alpha Mapping Alpha Mapping

• In the previous tree example, all the trees are texture
mapped onto flat polygons

• The illusion breaks down if the viewer sees the tree from
the side

• Thus, this technique is usually used with another
technique called “billboarding”
– Simply automatically rotating the polygon so it always

faces the viewer
• Note that if the alpha map is used to provide

transparency for texture map colors, one can often
combine the 4 pieces of information (R,G,B,A) into a
single texture map

Alpha Mapping

• The only issue as far as the rendering
pipeline is concerned is that the pixels of the
object made transparent by the alpha map
cannot change the value in the z-buffer
– We saw similar issues when talking about whole

objects that were partially transparent  render
them last with the z-buffer in read-only mode

– However, alpha mapping requires changing z-
buffer modes per pixel based on texel information

– This implies that we need some simple hardware
support to make this happen properly

Bill Boarding

• How?

Demo

10

Bill Boarding

• Eye looking down –Z axis, UP = +Y axis

• Compute eye-vector from ModelView:

• Rotation about Y:

• Build rotation matrix (R) with theta

• Transform geometry: MR (Modelview * Rotation)

Where:

Billboards

look = camera_pos - point_pos;
right = up x look;
up = look x right;

Billboards

up = arbitrary axis
look = camera_pos - point_pos;
right = up x look;
look = right x up;

Billboards Hack

• Trees don’t face camera

Billboards Hack

• Trees don’t face
camera

• Use the Modelview

• Set rotation to identity

void billboardCheatSphericalBegin() {
float modelview[16];
int i,j;

// save the current modelview matrix
glPushMatrix();

// get the current modelview matrix
glGetFloatv(GL_MODELVIEW_MATRIX , modelview);

// undo all rotations
// beware all scaling is lost as well
for(i=0; i<3; i++)

for(j=0; j<3; j++) {
if (i==j)

modelview[i*4+j] = 1.0;
else

modelview[i*4+j] = 0.0; }

// set the modelview with no rotations and scaling
glLoadMatrixf(modelview);

}
void billboardEnd() {

// restores the modelview matrix
glPopMatrix();

}

billboardCheatSphericalBegin();
drawObject();

billboardEnd();

If scaling:

billboardCheatSphericalBegin();
glScalef(1,2,1);
drawObject();

billboardEnd();

11

Billboards Hack 2

• Trees don’t face
camera

• Use the Modelview

• Make billboard
cylindrical

• Set part of rotation to
identity

Billboards Hack 3
• Modify the verticies of the

Billboard quad

• Reverses the orientations in the
Modelview Maxtrix

• Draw quad using right/up offsets

+ only get modelview once

- Must xform all verticies

right up

a = center - (right + up) * size;

b = center + (right - up) * size;

c = center + (right + up) * size;

d = center - (right - up) * size; How to do cylindrical?

Billboards Correct

• Trees face camera

Billboards Correct

• Trees face camera

• Need
– Object in world coords

– Target position (camera) in world coords

• Assume for the object (billboard)
Right = [1,0,0]

Up = [0,1,0]

LookAt = [0,0,1] {which is the normal}

Billboards Correct Billboards Correct

objToCamProj is the projection
to the XZ plane (set y=0)

1. Normalize objToCamProj

2. aux=LookAt dot objToCamProj

3. Up’= lookAt X objToCamProj

4. glRotate(acos(aux), Up’[0], Up’[1], Up’[2]

12

Billboards Correct

objToCamProj is the projection
to the XZ plane (y=0)

1. Normalize objToCamProj
2. aux=LookAt dot objToCamProj
3. Up’= lookAt X objToCamProj
4. glRotate(acos(aux), Up’[0], Up’[1], Up’[2]

Billboards Correct

objToCamProj is the projection
to the XZ plane (y=0)

1. Normalize objToCamProj
2. aux=LookAt dot objToCamProj
3. Up’= lookAt X objToCamProj
4. glRotate(acos(aux), Up’[0], Up’[1], Up’[2]

Tilt towards Camera
1. Aux’= objToCamProj dot objToCam
2. glRotate(acos(aux’), right[0], right[1],

right[2])

Billboards Correct

Object Position in world space

objPosWC = camPos + (M1-1) * V

Billboards Billboard Clouds

