Texture Filtering

MipMaps

Minification

Magnification and
Minification
More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

Texture Polygon Texture Polygon
Magnification Minification

“Optimal” case

Magnification

Pixel Footprint

Pyramid Textures (Mipmapping)

" texiure

screen

Linear vs. Nearest

/

Mipmapped Textures Example

Mipmapping allows for prefiltered texture maps point linear
of decreasing resolutions sampling filtering
Lessens interpolation errors for smaller

textured objects

Declare mipmap level during texture definition

glTexImage2D(GL_TEXTURE_*D, level, ..
mipmapped 4 mipmapped

GLU mipmap builder routines will build all the s linear

textures from a given image
gluBui ld*DMipmaps(..)

filtering

Anisotropic Filtering Anisotropic Filtering

bilinear

trilinear

Light Mapping

* In order to keep the texture and light maps
separate, we need to be able to perform
multitexturing — application of multiple
textures in a single rendering pass

Texture Lightmap Texture * Lightmap

Light Mapping

 Things for standard games are usually much
easier since the objects being light mapped are
usually planar:
— Walls
— Ceilings
— Boxes
— Tables

Thus, the entire planar object can be mapped
with a single texture map

Light Mapping

+ Can dynamic lighting be simulated by
using a light map?

« If the light is moving (perhaps attached to the
viewer or a projectile) then the lighting will
change on the surface as the light moves
— Moving ‘flashlight’ (use texture matrix)

— The light map values can be partially updated
dynamically as the program runs

— Several light maps at different levels of intensity could
be pre-computed and selected depending on the
light's distance from the surface

Light Mapping

» How do you create light maps?
* Trying to create a light map that will be used on
a non-planar object things get complex fast:

— Need to find a divide object into triangles with similar
orientations

— These similarly oriented triangles can all be mapped
with a single light map

Light Mapping

Lightmaps

 Creating local contnbqun Lightmap

Unlit Scene Lightmap Intensity Local Light
Contribution

Lightmaps

» Adding local light to scene

OpenGL Lighting Combined Image

Lightmaps

Segmenting Scene Lighting
— Static vs. dynamic light fields
— Global vs. local lighting

— Similar light shape

Lightmaps

* Moving Local Lights
— Recreate the texture; simple but slow
— Manipulate the lightmap

< Translate to move relative to the surface
« Scale to change spot size

« Change base polygon color to adjust intensity
— Projective textures ideal for spotlights
— 3D textures easy to use (if available)

Lightmaps
e Cached Lighting Results
— Reuse lighting calculations
» Multiple local lights (same type)
« Static portion of scene’s light field

» Sample region with texture instead of tessellating
— Low resolution sampling

 Local lighting; rapid change over small area
 Global lighting; slow change over large area

Lightmaps

» Segmenting the lighting

.. N

Dominant Lighting

Local lighting

Spotlights as Lightmap
Special Case
» Mapping Single Spotlight Texture Pattern

DL

Use texture matrix to perform spotlight
texture coordinates transformations.

Lightmaps Lightmaps

» Creating a lightmap
— Light white, tesselated surface with local light
— Render, capture image as texture
— Texture contains ambient and diffuse lighting
—glLight() parameters should match light
— Texture can also be computed analytically

» Creating a lightmap

Render surface Create a Texture
lit by local light Map from Image

Lightmaps Lightmaps
* Lightmap building tips Lighting with a Lightmap
— Local light is affected by surface color and
texture
— Two step process adds local light contribution:
« Modulate textured, unlit surfaces with lightmap
« Add locally litimage to scene

Boundary should have
constant value

Intensity changes from
light should be minimal

near edge of lightmap — Can mix OpenGL, lightmap lighting in same
scene

Lightmaps Lightmaps

 Creating local contribution D Lightmap » Adding local light to scene

OpenGL Lighting Combined Image
Unlit Scene Lightmap Intensity Local Light

Contribution

Lightmaps in Quake2

(modulate)

lightmar

COMBINE

Lightmaps

 Lightmap considerations

— Lightmaps are good:
Under-tessellated surfaces
Custom lighting
Multiple identical lights
Static scene lighting

Multitexturing

Multitexturing allows the use of multiple textures at one time.
It is a standard feature of OpenGL 1.3 and later.

An ordinary texture combines the base color of a polygon with
color from the texture image. In multitexturing, this result of
the first texturing can be combined with color from another
texture.

Each texture can be applied with different texture coordinates.

Packing Many Lightmaps
into a Single Texture

» Quake 2 light map texture image example

— Lightmaps typically
heavily magnified.

— Permits multiple
lightmaps packed into a
single texture.

— Quake 2 computes
lightmaps via off-line
radiosity solver.

Lightmaps

 Lightmap considerations

— Lightmaps less helpful:
Highly tessellated surfaces
Directional lights
Combine with other surface effects (e.g. bump-
mapping)

— eats a texture unit/access in fragment programs
— may need to go to multi-pass rendering (fill-bound app)

Texture Units Texture Units

Multitexturing uses multiple texture units.

Texture units are named GL_TEXTUREO, GL_TEXTUREL1,
A texture unit is a part of the rendering pipeline that applies one texture to whatever is etc.
being drawn.

Each unit has a texture, a texture environment, and optional texgen mode. That is, The unit names are used with two new functions.
its own complete and independent OpenGL texture state

glActiveTexture(texture_unit)

— selects the current unit to be affected by texture calls (such as
glBindTexture, glTexEnv, glTexGen).

Most current hardware has from 2 to 16 texture units.

To get the number of units available: glGetintegerv(GL_MAX_TEXTURE_UNITS)
TexCoonds feacoorus

gIMultiTexCoord2f(texture_unit, s, t)

— Sets texture coordinates for one unit
olor —b-TEwaEu—uirExTunE! }—.TEXTUREZ-—- Colo

Image Imago Imago

OpenGL Multitexture Texture

OpenGL Multitexture Quick Tutorial Environments (old way)

= Conflgunng up a given texture unit:
tex1_uniform_loc = glGetUniformLocation(prog, “texl1™);

ormli(texl_uniform_loc, 1); e Chain of Texture Environment Stages
eTexture(GL_TEXTUREL) ; <— Sets active texture unit)
indTexture(GL_TEXTURE_2D, texObject); Pre-texturing color
gITexlmageZD(GL TEXTURE_2D, .); update glColor3f(r,
glTexParameterfv(GL TEXTURE_2D, 5 state of #0
glITexEnvfv(GL_TEXTURE_ENV, -) e

Sl&ii‘f-?ﬂﬁﬁdﬁ(m TE>)(TURE) texture gVt exe coroal —>="P .,/ GL_MODULATE

glLoadldentity unit GLIERIURHLARE, < l

. : IMultiTexCoord2fi
Settmg texture coordinates for a vertex: oo s —LOOKD ., GL_DECAL
glMul exCoord4f(GL_TEXTUREO, sO, tO, rO ,q0); — ! b aco liter
glMu TexCoord2f(GL_TEXTUREL, sl1, tl); l
glIMultiTexCoord3f(GL_TEXTURE2, s2, t2, H#H2

glVertex3f(x, y, z) gIMultiTexCoord2f(Post-texturing
_Lookup —
GL_TEXTURE2_ARB, ... & filter GL_BLEND color

OpenGL Multitexture Texture Detail Texture
Environments (new way)

e Chain of Texture Environment Stages:
put it in the shaders!

varying vec3 lightDir, normal;

void main(){
gl_TexCoord[0 ureMatrix(0] * gl_MultiTexCoord0;
gl_TexCoord[1] reMatrix(1] * gI_MultiTexCoord1;
gl_Position = ftra

)

}

varying vec3 lightDir, normal;

uniform sampler2D tex0, tex:

void main(

vecd
float intensity, at, af;
ot(lightDir, normalize(normal)),0.0);
|_FrontMaterial.diffuse.rgh + gl_FrontMaterial.ambient.rgb
|_FrontMaterial diffuse.
oord[0].st) + texture2D(tex0,gl_TexCoord|

ecd(ct cf, at*af);

Alpha Mapping

» An Alpha Map contains a single value with
transparency information
— 0 > fully transparent
— 1 - fully opaque
» Can be used to make sections of objects
transparent
» Can be used in combination with standard
texture maps to produce cutouts
— Trees
— Torches

Multitexture Lightmapping

Alpha Mapping

In the previous tree example, all the trees are texture
mapped onto flat polygons
The illusion breaks down if the viewer sees the tree from
the side
Thus, this technique is usually used with another
technique called “billboarding”

— Simply automatically rotating the polygon so it always

faces the viewer

Note that if the alpha map is used to provide
transparency for texture map colors, one can often
combine the 4 pieces of information (R,G,B,A) into a
single texture map

Alpha Mapping

Bill Boarding

Alpha Mapping

* The only issue as far as the rendering
pipeline is concerned is that the pixels of the
object made transparent by the alpha map
cannot change the value in the z-buffer

— We saw similar issues when talking about whole
objects that were partially transparent = render
them last with the z-buffer in read-only mode

— However, alpha mapping requires changing z-
buffer modes per pixel based on texel information

— This implies that we need some simple hardware
support to make this happen properly

Bill Boarding

Eye looking down —Z axis, UP = +Y axis Camera up vem/r,,.ﬁ.ﬂ--é—u-?; -
Compute eye-vector from ModelView:

Rotation about

Camera
::_t;l: Where: t_:“

amera_pos - point_pos;

Build rotation matrix (R) with theta s
Transform geometry: MR (Modelview * Rotation)

Billboards Hack

axis to rotate

about —_ » Trees don’t face camera

local up
vector

+

cameras
= arbitrary axis vigwing
g . direction
camera_pos - point_pos;
p x look;
look = right x up;
plane
perpendicular
tothe camera

Camera

void billboardCheatSphericalBegin() { . .
float modelview[16]; billboardCheatSphericalBegin();

Billboards Hack daonec

billboardEnd();
Il save the current modelview matrix
glPushMatrix(); If scaling:

e Trees don't face /l get the current modelview matrix

camera glGetFloatv(GL_MODELVIEW_MATRIX , modelview); oG e e g

glScalef(1,2,1);
¢ Use the Modelview : i 1 /1 undo all rotations drawObject();

/I beware all scaling is lost as well billboardEnd();
e Set rotation to identity

0{

modelview matrix

Billboards Hack 2

Trees don'’t face
camera
Use the Modelview

Make billboard
cylindrical

1

atd af |[all
ag a4 ((a13
af allf(ald

ar all als

Set part of rotation to

identity

Billboards Correct

» Trees face camera

cameras
viewing
direction

plane
perpendicular
tathe camera

Camera

Billboards Correct

o

Billboards Hack 3

Modify the verticies of the

Billboard quad W1

Revelsgs the 0ri9|wlations in the 20 ad ag a2
Modelview Maxtrix al a5 af [[al3
az af all||ald]

Draw quad using right/up offsets a3 ar_ all als

+ only get modelview once
- Must xform all verticies

a = center - (right + up) * size;
b = center + (right - up) * size;
c = center + (right + up) * size; right

6= G = ()i =) “Sre How to do cylindrical?

Billboards Correct

Trees face camera

Need

— Object in world coords

— Target position (camera) in world coords
» Assume for the object (billboard)

Right = [1,0,0]

Up =1[0,1,0]

LookAt = [0,0,1] {which is the normal}

Billboards Correct

bjToCamProj is the projection

to the XZ plane (set y=0)

L,

2.

&

Normalize objToCamProj
aux=LookAt dot objToCamProj
. Up’=lookAt X objToCamProj

. glRotate(acos(aux), Up’[0], Up’[1]

11

Billboards Correct

objToCamProj is the projection
to the XZ plane (y=0)

. Normalize objToCamProj

. aux=LookAt dot objToCamProj

. Up’=lookAt X objToCamProj

. glRotate(acos(aux), Up’[0], Up'[1], Up’[2]

Tilt towards Camera

1. Aux’= objToCamProj dot objToCam

2. glRotate(acos(aux’), right[0], right[1],
right[2])

Billboards Correct

objToCamProj is the projection
to the XZ plane (y=0)

. Normalize objToCamProj

. aux=LookAt dot objToCamProj

. Up’=lookAt X objToCamProj

. glRotate(acos(aux), Up'[0], Up'[1],

Billboards Correct

Object Position in world space

objPosWC = camPos + (M11) * V

all ala

wl=[a12, a3, a14]

Billboard Clouds

12

