OpenGL Terminology OpenGL Pipeline

What is OpenGL?
How are objects represented?
What's a Fragment?

What's a buffer?
— How many and name them?
What's a texture?

Blending

Learn to use the A component in RGBA

Blending color for
« - Blending for translucent surfaces

» - Compositing images
- Antialiasing

Opacity and Transparency Physically Correct Translucency

)) Dealing with translucency in a physically correct manner is
Opague surfaces permit no light to pass through difficult due to
9 0 « Th lexi f the i li i f ligh
N Transparent surfaces permit all |Ight to pass m’jt;o_mp exity of the internal interactions of light and
e Translucent surfaces pass some ||ght « Limitations of fixed-pipeline rendering w/ State Machine

translucency = 1 — opacity (o)

Window Transparency Window Transparency

« Look out a window 1-— - « Look out a window 1- -

* What's wrong with that?

Screen Door Transparency

Window Transparency

glEnableGL_POLYGON_STIPPLE(GL_POLYGON_STIPPLE)

e Look out a window

= pIe Frame Buffer (assuming 32-bits)
— Simple color model: R, G, B; 8 bits each
— a-channel A, another 8 bits
Alpha determines opacity, pixel-by-pixel
— o = 1: opaque
— o = 0: transparent
— 0 < a < 1:translucent
 Blend translucent objects during rendering

» Achieve other effects (e.g., shadows)

Compositing Blending

* Back to Front » Combine fragments with pixel values that

—(1_ are already in the framebuffer
COUt . (1 ac)cin +aCCC glBlendFunc(src, dst)

 Front to Back .. _ L
C =srcC,+dst C,

Cout = Cin + Ccac (1_ ain) m
Aoy = Ay T A (1_ ain) :

A A |

Blending Blending

-

 Blending operation o
crone
— . = GL_SRC_COLOR
Source s [Sr Sg sb Sa] GLONE_ MINUS_SRC_OOLOR L1, Up=(R, Gy, B
— Destination: d = [d, d, d, d] DT COLOR e Gy B
r=g a. GLONE MINUS_DST_COLOR 01, 1, B0y Gy, B

L

A

—b =[b, by b, b,] source blending factors cLosT L Ve to

LN MENUS_DST_ALFHA A1, Uiy Ag A

A

- ¢ = [c; ¢4 ¢, C,] destination blending factors CLLCONTANT.COLOR oot

GLONE_MINUS_CONSTANT_COLOR (1, 1, 1R, G, B)
—d’ =[bs, +cd, , byS, + c,dy ,bpS, + Cudy b.s, + c,d poman P
[ror r™r, » ¥g-g g-'g *~b>b b“b ~ava a a] GLONEMINUS_CONSTANTALPHA (1, 1, 114A, A Ad
GL_SRC_ALFHA_SATURATE AL £ [[= mindA, 1-Ag)

A

A

=
'
A
1=
A
1-
A
GL_ONE_MINUS_SRC_ALFHA A AL A A 1=
A
1-
A
-
A
-
'

Tabta 81 Sourcy snd Destinasion Blending Facton

I you use one of the GLACONSTANT® blending functions, you need to use
FIBlendCalon) 10 specify 3 contant cnlor

OpenGL Blending and Compositing glBlendEquation(...)

» Must enable blending and pick source and
destination factors GL_FUNC_ADD
glEnable(GL_BLEND) GL_FUNC_SUBTRACT

glBlendFunc(source_factor,destination_factor)
e Only certain factors supported GL_REVERSE_SUBTRACT

GL_ZERO, GL_ONE GL_MIN
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA GL MAX
GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA -

See Red Book for complete list

Blending Errors Blending Errors

Operations are not commutative (order!) ¢ Interaction with hidden-surface

Operations are not idempotent removal
Limited dynamic range — Draw Opaque geom first, then semi-

Interaction with hidden-surface removal transparent
— Polygon behind opaque one should be hidden — Use Alpha test:
— Translucent in front of others should be composited glAlphaFunc(GL_GREATER, 0.1)

IEnable(GL_ALPHA_TEST
—Show of the problem dlEnes el _TEST)
— Solution?

Blending Errors Blending Errors

e [nteraction with hidden-surface » Interaction with hidden-surface

removal removal
— Disable Z-test? — Disable Z-test?
— 2 polys: red (front) and blue (behind) on — 2 polys: red (front) and blue (behind) on
green background, 50% transparency green background, 50% transparency

1. Render background 1. Render background
2. Render red poly 2. Render blue poly

3. Render blue poly 3. Render red poly
What happens (z-test enabled)? What happens (z-test enabled)?

Blending Errors Blending Errors

e Interaction with hidden-surface e Interaction with hidden-surface
removal removal
— Disable Z-test? — Disable Z-test?
— 2 polys: red (front) and blue (behind) on — 2 polys: red (front) and blue (behind) on
green background, 50% transparency green background, 50% transparency

1. Render background 1. Render background
2. Render red poly 2. Render blue poly

3. Render blue poly 3. Render red poly
What happens (z-test disabled)? What happens (z-test disabled)?

Blending Errors

* Interaction with hidden-surface removal
— Polygon behind opaque one should be hidden
— Translucent in front of others should be composited
— Solution?

» Two passes using alpha testing (glAlphaFunc): 1st pass
« alpha=1 accepted, and 2nd pass alpha<1 accepted

» make z-buffer read-only for translucent polygons (alpha<1)
with glDepthMask(GL_FALSE);

Sorting

Correct

Magenta
Yellow
Gray
Cyan

Image Dissolve?

* How to do it?

Sorting

» General Solution?

— Just sort polygons
* Which Space?

Sorting

* General Solution?

— Just sort polygons
* Which Space?
— What About?

— Depth Peeling

Sorting

¢ General Solution?

— Just sort polygons
* Which Space?
— What About?2

— Depth Peeling (

Depth Peeling Shaders

http://code.google.com/p/cuda-
Idi/source/browse/trunk/src/depth peeling/
A=l

Antialiasing

* Removing the Jaggies

glEnable (mode)
* GL_POINT SMOOTH
*GL_LINE_SMOOTH
* GL_POLYGON_SMOOTH

— alpha value computed by computing
sub-pixel coverage

— available in both RGBA and colormap modes

(==

Antialiasing with Multiple Polygons

Initially, background color C,, a; =0
Render first polygon; color C, fraction o,

- Cy=(1-0y)Cq + 0,Cy

— Oy =0y

Render second polygon; assume fraction o,
If no overlap (case a), then

- Cy=(1-0a,)Cy+ a,C,

v -
—ag=oytoy

Dual Depth Peeling

* Reduce number of passes by processing
both front and back at the same time

Figure 3. Dual depth peeling advancing fronts.

Antialiasing Revisited

Single-polygon case first

Set o value of each pixel to covered
fraction

Use destination factor of “1 — a”

Use source factor of “o”

This will blend background with foreground
Overlaps can lead to blending errors

Antialiasing with Multiple Polygons

* Now assume overlap (case b)

» Average overlap is a;a,

e Soay=a; +a,—a;a,

» Make front/back decision for color as usual

Antialiasing in OpenGL

» Avoid explicit a-calculation in program
» Enable both smoothing and blending

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

» Can also hint about quality vs performance
using glHint(...)

Depth Cueing and Fog Example: Fog

» Another application of blending + Fog in RGBA mode:

+ Use distance-dependent (z) blending C=fC +(1-AC
— Linear dependence: depth cueing effect ¥ =1
— Exponential dependence: fog effect —f: depth-dependent fog factor
— This is not a physically-based model

[Example: Fog Tutor]

Depth Cue via Fog

[GL_EXP2, density=0.5
/ GL_EXP?2, density=0.25

4+ BL_LINEAR
/

GL_EXP, donsity=0.25
GL_EXP, density=0.5

Example: Depth Cue

