Design Theory for Relational Databases: Functional Dependencies and Normalization

Juliana Freire

Some slides adapted from L. Delcambre, R. Ramakrishnan, G. Lindstrom, J. Ullman and Silberschatz, Korth and Sudarshan
Relational Database Design

• Use the Entity Relationship (ER) model to reason about your data---structure and relationships, then translate model into a relational schema (more on this later)

• Specify relational schema directly
 – Like what you do when you design the data structures for a program
Pitfalls in Relational Database Design

• Relational database design requires that we find a “good” collection of relation schemas

• A bad design may lead to
 – Repetition of Information
 – Inability to represent certain information

• Design Goals:
 – Avoid redundant data
 – Ensure that relationships among attributes are represented
 – Facilitate the checking of updates for violation of database integrity constraints
Design Choices: Small vs. Large Schemas

Which design do you like better? Why?

EMPLOYEE(ENAME, SSN, ADDRESS, PNUMBER)

PROJECT(PNAME, PNUMBER, PMGRSSN)

EMP_PROJ(ENAME, SSN, ADDRESS, PNUMBER, PNAME, PMGRSSN)

An employee can be assigned to at most one project, many employees participate in a project
The description of the project (the name and the manager of the project) is repeated for every employee that works in that department.

Redundancy!

The project is described redundantly. This leads to update anomalies.
Update Anomalies \rightarrow Inconsistencies

Insertion anomalies:
if you insert an employee
need to know which department he/she works
need to know the descriptive information for
that department
if you want to insert a department, you can’t...until
there is at least one employee.

Deletion anomalies: if you delete an employee, is that dept.
gone? was this the last employee in that dept.?

Modification anomalies: change DNAME, for example,
need to change it everywhere!
EMP(ENAME, SSN, ADDRESS, PNUM, PNAME, PMGRSSN)

Solution: Use NULL values

• May make it hard to specify & understand joins
• May make it hard to aggregate (count, sum, …)
• May have different meanings:
 - attribute *does not apply* to this tuple
 - attribute value is *unknown*
 - value is *known but absent* (not yet recorded)
• Make it hard to interpret query answers

• May not store information about a department with no employees

 NULL values also cause problems
Design Choices: Small vs. Large Schemas

Which design do you like better? Why?

PROJECT(PNAME, PNUMBER, PMGRSSN)

PROJ_DEPT(PNUMBER,DNUMBER)

PROJECT(PNUMBER, PNAME, PMGRSSN,DNUMBER)

A department can hold many projects, but a project can only belong to one department.
Design Choices: Small vs. Large Schemas

Which design do you like better? Why?

A department can hold many projects, but a project can only belong to one department.

No redundancy: PNUMBER is key for both relations

What if I need to create a project before deciding which department will manage it?
Design Choices: Small vs. Large Schemas

Which design do you like better? Why?

<table>
<thead>
<tr>
<th>EMPLOYEE(ENAME, SSN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP_INFO(ENAME, STARTDATE, ADDRESS, PHONE)</td>
</tr>
<tr>
<td>EMP(ENAME, SSN, STARTDATE, ADDRESS, PHONE)</td>
</tr>
</tbody>
</table>
Loss of Information in Decomposition

<table>
<thead>
<tr>
<th>ENAME</th>
<th>SSN</th>
<th>START_DATE</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>123-45-6789</td>
<td>1999-05-27</td>
<td>9085837689</td>
</tr>
<tr>
<td>John</td>
<td>321-54-9876</td>
<td>1975-03-05</td>
<td>5057894567</td>
</tr>
</tbody>
</table>

John 123-45-6789
John 1975-03-05
John 321-54-9876
Functional Dependencies (FDs) and Database Design

• A FD is yet another kind of integrity constraint
• Vital for the redesign of database schemas to eliminate redundancy
 – Enable systematic improvement of database designs
• A functional dependency (FD) on relation R is a statement of the form:

\[A_1, A_2, \ldots, A_n \rightarrow B \]

If two tuples of R agree on attributes A1, A2, ..., An, then they must also agree on some other attribute B
FD: Example

EMP(ENAME, SSN, STARTDATE, ADDRESS, PHONE)
 SSN → ENAME
 SSN → STARTDATE
 SSN → ADDRESS
 SSN → PHONE

• Shorthand:
 SSN → ENAME, STARTDATE, ADDRESS, PHONE

• Do the following FDs hold?
 ENAME → SSN
 PHONE → SSN

Given a SSN, we expect there is a unique employee
FDs: More Examples

• Examples of functional dependencies:
 employee-number → employee-name
 course-number → course-title
 movieTitle, movieYear → length filmType studioName

• Examples that are NOT functional dependencies
 employee-name → employee-number X
 two distinct employees can have the same name
 course-number → book X
 a course may use multiple books
 course-number → car-color X
 ????
What is functional in a functional dependency?

A1,….An → B

A FD is a function that takes a list of values (A1,….An) and produces a unique value B or no value at all (this value can be the NULL value)

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
<th>x</th>
<th>g(x)</th>
<th>x</th>
<th>h(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

We are looking for functional relationships (that must occur in a relation) among attribute values
There is a function that takes a list of values \(A_1, \ldots, A_n \) and produces a unique value \(B \) or no value at all! This value can be the NULL value!

<table>
<thead>
<tr>
<th></th>
<th>f(x)</th>
<th></th>
<th>g(x)</th>
<th></th>
<th>h(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>

Unlike mathematical functions, you cannot compute from first principles – you need to do it by **looking up in a table**

We are looking for **functional** relationships (that **must** occur in a relation) among attribute values
FDs and Database Instances

- Which FDs hold for the following table?

<table>
<thead>
<tr>
<th>ENAME</th>
<th>SSN</th>
<th>START_DATE</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>123-45-6789</td>
<td>1999-05-27</td>
<td>9085837689</td>
</tr>
<tr>
<td>Mary</td>
<td>321-54-9876</td>
<td>1975-03-05</td>
<td>5057894567</td>
</tr>
<tr>
<td>Melissa</td>
<td>987-65-4321</td>
<td>1985-03-05</td>
<td>5057899999</td>
</tr>
</tbody>
</table>
FDs and Database Instances

• Which FDs hold for the following table?

<table>
<thead>
<tr>
<th>ENAME</th>
<th>SSN</th>
<th>START_DATE</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>123-45-6789</td>
<td>1999-05-27</td>
<td></td>
</tr>
<tr>
<td>Mary</td>
<td>321-54-9876</td>
<td>1975-03-05</td>
<td></td>
</tr>
<tr>
<td>Melissa</td>
<td>987-65-4321</td>
<td>1985-03-05</td>
<td></td>
</tr>
</tbody>
</table>

• What about for this other table?

<table>
<thead>
<tr>
<th>ENAME</th>
<th>SSN</th>
<th>START_DATE</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>123-45-6789</td>
<td>1999-05-27</td>
<td>9085837689</td>
</tr>
<tr>
<td>Mary</td>
<td>321-54-9876</td>
<td>1975-03-05</td>
<td>9085837689</td>
</tr>
<tr>
<td>Melissa</td>
<td>987-65-4321</td>
<td>1985-03-05</td>
<td>5057899999</td>
</tr>
</tbody>
</table>
Functional Dependencies

• Let R be a relation schema, $A \subseteq R$ and $B \subseteq R$. The functional dependency
 \[A \rightarrow B \]
 holds on R if and only if for any legal relations $r(R)$, whenever any two tuples t_1 and t_2 of r agree on the attributes A, they also agree on the attributes B. That is,
 \[t_1[A] = t_2[A] \Rightarrow t_1[B] = t_2[B] \]

• If the value of the first attribute(s), A, is known, then the value of the second attribute, B, is known (i.e., determined)

• If a relation R is legal under a set F of FDs, we say R satisfies F, or that F holds in R

• Generalization of the notion of a key
Keys and FDs

EMPLOYEE (SSN, NAME, RATING, HOURLY_WAGE, JOB_DESC)

What does it mean to be a key?
 The key attributes uniquely identify the tuple.

 For one value of the key, there is only one value for all the other attributes.

 There is an FD from the key to every other attribute in the table.

SSN → NAME, RATING, HOURLY_WAGE, JOB_DESC
What does it mean to be a key?

The key attributes uniquely identify the tuple.

When you decide on a key….you’re indicating a set of FDs

But an FD is not necessarily a key,

e.g., Rating → Hourly_Wage, but Rating is not a key

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Rating</th>
<th>Hourly_Wage</th>
<th>Job_Desc</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>John</td>
<td>1</td>
<td>10</td>
<td>programmer</td>
</tr>
<tr>
<td>234</td>
<td>John</td>
<td>2</td>
<td>20</td>
<td>manager</td>
</tr>
<tr>
<td>456</td>
<td>Mary</td>
<td>1</td>
<td>10</td>
<td>QA</td>
</tr>
</tbody>
</table>
Minimality of Keys

• While we suppose designers will keep their design simple, we have no way of knowing whether a key is minimal

• FDs allow us to reason about the minimality of keys!

• Minimal: you can’t throw anything out

• Minimum: the smallest possible
 – E.g., \{city,state\} and \{zipcode\} are both (minimal) keys, while \{zipcode\} is minimum
Minimality of Keys: Example

Movies(title, year, length, filmType, studioName, starName)

Is \{title, year, starName\} a key for Movies?
 Yes, they functionally determine all other attributes.

Is \{title, year, starName\} a \textit{minimal} key for Movies?
 Need to check all proper subsets:
 \{title, year\} is not a key—title and year do not functionally determine starName (a movie can have multiple stars!)
 \{year, starName\} is not a key--there can be a star in 2 movies in the same year
 \{title, starName\} is not a key--two movies with the same title in different years may have a star in common
Discovering Keys for Relations

• Entities --> Relations
 – Key of entity becomes key of corresponding relation (make sure it is minimal!)

• Relationships --> Relations
 – A---n-R-n---B: key(R) = key(A) U key(B)
 – A---n-R-1---B: key(R) = key(A)
 – A---1-R-1---B: key(R) = key(A); or key(R) = key(B)
Discovering Keys for Relations: Example

- **Stars-in**
 - title
 - year
 - length
 - salary

- **Stars**
 - address
 - name

- **Movies**

- **Owns**

- **Studios**
 - name
 - address

StarsIn(title, year, starName, salary)

Owns(title, year, studioName)
FDs and Redundancy

• Functional dependencies allow us to express constraints that cannot be expressed using keys

```
EMPLOYEE (SSN, NAME, RATING, HOURLY_WAGE, JOB_DESC)
```

```
  rating → hourly_wages
```

Redundant storage of rating-wage associations

• Having formal techniques to identify the problem with this design and guide us to a better design is very useful!
How can FDs help?

• They help remove redundancy by identifying parts into which a relation can be decomposed
 – E.g., rating → hourly_wages
 ssn → name, job_desc

Bad!

EMPLOYEE (SSN, NAME, RATING, HOURLY_WAGE, JOB_DESC)

Good!

EMPLOYEE (SSN, NAME, RATING, JOB_DESC)
RATING_WAGE(RATING, HOURLY_WAGE)
Goal: All FDs implied by candidate keys

If all FDs are “implied by the candidate keys”

The DBMS only needs to enforces keys (it enforces keys anyway)

FDs would be automatically enforced without any extra work on the part of the DBMS

One of our goals: have ALL FDs implied by the candidate keys. No other (non-trivial FDs).

Bad! EMPLOYEE (SSN, NAME, RATING, HOURLY_WAGE, JOB_DESC)

Good! EMPLOYEE (SSN, NAME, RATING, JOB_DESC)
 RATING_WAGE(RATING,HOURLY_WAGE)
Functional Dependencies and Normalization

- FDs are the basis of normalization -- a formal methodology for refining and creating good relational designs
- Normalization places some constraints on the schema to:
 - Reduce redundancy
 - Alleviate update anomalies
 - Reduce the pressure to have null values
- Normalization puts relations in good form!
- Normalization is a solved problem (all algorithms & proofs are worked out)
Schema Refinement Techniques

- **Decomposition** starts with a relational schema, and uses the FDs to guide the schema decomposition, e.g., to replace a relation $R\ (ABCD)$ with, two relations, say $R_1(AB)$ and $R_2\ (BCD)$ using the `project` operator.

- **Synthesis** is another refinement technique which takes all attributes over the original relation R, a set of FDs over these attributes, and constructs a *good* schema.
What are the FDs?

EMP(ENAME, SSN, BDATE, ADDRESS, DNUM, DNAME, DMGRSSN)

EMP_PROJ(SSN, PNUM, HOURS, ENAME, PNAME, PLOCATION)
What are the FDs?

EMP(ENAME, SSN, BDATE, ADDRESS, DNUM, DNAME, DMGRSSN)

Diagram:
1 --> 2 --> 3 --> 4 --> 5 --> 6
How can we decompose?

What is a good name for the second table here?
What are the FDs?

EMP_PROJ(SSN, PNUM, HOURS, ENAME, PNAME, PLOCATION)
How can we decompose?

EMP_PROJ(SSN, PNUM, HOURS, ENAME, PNAME, PLOCATION)

EMP2(SSN, ENAME)

X(PNUM, PNAME, PLOCATION)

Y(SSN, PNUM, HOURS)

How should we name these new tables?
Problems with Decompositions

- There are three potential problems to consider:
 - Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation! (Losslessness)
 - Checking some dependencies may require joining the instances of the decomposed relations. (Dependency preservation)
 - Some queries become more expensive.
 - e.g., In which project does John work? (EMP2 JOIN X)

- **Tradeoff:** Must consider these issues vs. redundancy.
How do we know if a decomposition is correct? That we haven’t lost anything?

We have three goals:

Lossless decomposition
(don’t throw any information away)
(be able to reconstruct the original relation)

Dependency preservation
all of the non-trivial FDs each end up in just one relation (not split across two or more relations)

Boyce-Codd normal form (BCNF)
no redundancy beyond foreign keys -- all FDs implied by keys
What is a lossless decomposition?

When R is decomposed into R_1 and R_2

If $(R_1 \bowtie R_2) = R$ then decomposition is lossless

if it is a lossy decomposition, then $R_1 \bowtie R_2$ gives you TOO MANY tuples.
Example: A Lossy Decomposition

<table>
<thead>
<tr>
<th>Employee (SS-number, name, project, p-title)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 smith p1 accounting</td>
</tr>
<tr>
<td>2 jones p1 accounting</td>
</tr>
<tr>
<td>3 smith p2 billing</td>
</tr>
</tbody>
</table>

decomposition:

<table>
<thead>
<tr>
<th>Employee (SS-number, name)</th>
<th>Project (project, p-title, name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 smith</td>
<td>p1 account smith</td>
</tr>
<tr>
<td>2 jones</td>
<td>p1 account jones</td>
</tr>
<tr>
<td>3 smith</td>
<td>p2 billing smith</td>
</tr>
</tbody>
</table>

now if we join them with natural join, what happens?

you get at least one extra tuple!!!

| 1 smith p2 billing |
Test for a **Lossless Decomposition**

Let R_1 and R_2 form a decomposition of R. R_1 and R_2 are both sets of attributes from R.

The decomposition is lossless if ...

- the attributes in common are a key for *at least one* of the relations R_1 and R_2

$$R_1 \cap R_2 = \text{key}(R_1), \text{ or } R_1 \cap R_2 = \text{key}(R_2)$$
Example: testing for a lossless decomposition

Employee(SS-number, name, project, p-title)

decomposition: Employee (SS-number, name)
 Project (project, p-title, name)

Which attribute is in common?
 name (of the employee)

Is name a key for either of these two tables?
NO! We have a problem.
Example: testing for a lossless decomposition

Employee(SS-number, name, project, p-title)

decomposition: Employee (SS-number, name, project)
 Project (project, p-title)

Which attribute is in common?
 project
Is project a key for either of these two tables?
Yes!
Example: testing for a lossless decomposition

Employee(SS-number, name, project, p-title)

decomposition: Employee (SS-number, name) Project (project, p-title)

Which attribute is in common?
 None

We have a problem (unless the original Employee relation did not mean to associate an employee with a project).
Testing for a Lossless Join

• If we project R onto R_1, R_2, \ldots, R_k, can we recover R by rejoining?

• Any tuple in R can be recovered from its projected fragments.

• So the only question is: when we rejoin, do we ever get back something we didn’t have originally?
The Chase Test

• Suppose tuple \(t \) comes back in the join.
• Then \(t \) is the join of projections of some tuples of \(R \), one for each \(R_i \) of the decomposition.
• Can we use the given FD’s to show that one of these tuples must be \(t \) ?
The Chase – (2)

• Start by assuming $t = abc\ldots$.
• For each i, there is a tuple s_i of R that has a, b, c,\ldots in the attributes of R_i.
• s_i can have any values in other attributes.
• We’ll use the same letter as in t, but with a subscript, for these components.
Example: The Chase

• Let $R = ABCD$, and the decomposition be AB, BC, and CD.
• Let the given FD’s be $C \rightarrow D$ and $B \rightarrow A$.
• Suppose the tuple $t = abcd$ is the join of tuples projected onto AB, BC, CD.
The tuples of R projected onto AB, BC, CD.

The Tableau

Use $B \rightarrow A$

We’ve proved the second tuple must be t.

Use $C \rightarrow D$
Dependency-Preservation: Example

\[R = \text{addr(city, state, zip)} \]
\[\text{FDs} = \text{city state} \rightarrow \text{zip}, \text{zip} \rightarrow \text{state} \]
\[\text{Decomposition: R1(zip, state), R2(city, zip)} \]

\[\text{city state} \rightarrow \text{zip} \quad \text{does not hold in R2} \]

Problem: If the DBMS only enforces keys (and not FDs directly), this FD won’t be enforced
Testing \text{city state} \rightarrow \text{zip} requires a join: R1 JOIN R2

Is it possible to guarantee dependency preservation?
More on this later!
Normal Forms

• Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
• If a relation is in a certain normal form (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized.
 – This can be used to help us decide whether decomposing the relation will help.
Some nomenclature:
Key and Key Attribute

Assign(\texttt{SSN}, \texttt{PROJECT}, \texttt{S_DATE})

Here the attributes \texttt{SSN} and \texttt{PROJECT} taken together form the \textit{key}. \texttt{SSN} is a \textit{key attribute}; so is \texttt{PROJECT}. \texttt{S_DATE} is a \textit{non-key attribute}.

\texttt{EMPLOYEE (SSN, NAME, SALARY, JOB_DESC)}

Here the attribute \texttt{SSN} is the \textit{key}. \texttt{SSN} is a \textit{key attribute}. All other attributes are \textit{non-key attributes}.
Candidate Key

Employee(SSN, NAME, EID)

If the attribute EID is unique for each employee, then either SSN or EID could be a key. Thus, they are both candidate keys (*minimal!*). However, only one of them may be designated the primary key.

Normalization considers *all* candidate keys of a relation, not just the primary key.
Normal Forms Based on FDs

1NF – all attribute values (domain values) are atomic (part of the definition of the relational model)

2NF – all non-key attributes must depend on a whole candidate key (no partial dependencies)

3NF – table is in 2NF and all non-key attributes must depend on only a candidate key (no transitive dependencies)

BCNF – every determinant is a superkey, X --> A, X is a superkey

BCNF >> 3NF >> 2NF >> 1NF
Every attribute must depend upon the key, the whole key, and nothing but the key.

definition of key
2NF
BCNF (and 3NF)
Examples of Violations

2NF - all non-key attributes must depend on the whole key
Assigned-to (A-project, A-emp, emp-name, percent)

3NF - all non-key attributes must depend on only the key
Employee (SS-number, name, address, project, p-title)

BCNF - every determinant is a candidate key
(all FDs are implied by the candidate keys)
Assigned-to (A-emp-ID, A-Project, A-SS-number, percent)
What is the Normal Form of R?

Given: \(R = \{ S, B, D, C \} \) (or just SBDC)

Key = \(\{ SBD \} \) \(F = \{ S \rightarrow C \} \)

Key = \(\{ SBD, CBD \} \) \(F = \{ S \rightarrow C \} \)

Key = \(\{ SBD \} \) \(F = \{ SBD \rightarrow C \} \)
What is the Normal Form of R?

Given: \(R = \{ S, B, D, C \} \) (or just SBDC)

Key = \{ SBD \}
\(F = \{ S \rightarrow C \} \)
- \(R \) violates BCNF – \(S \) is not a candidate key
- \(R \) violates 3NF – \(S \) is not a candidate key, and \(C \) is not part of a key
- \(R \) violates 2NF (\(C \) does not depend on the whole key)

Key = \{ SBD, CBD \}
\(F = \{ S \rightarrow C \} \)
- \(R \) is in 3NF (\(C \) is now a key attribute)
- \(R \) violates BCNF because the determinant (\(S \)) is not a key (does not matter that \(C \) is a key attribute)

Is this in 3NF?

Key = \{ SBD \}
\(F = \{ SBD \rightarrow C \} \)
- \(R \) is in BCNF because the determinant is a key (the key is the only FD here)
What’s the Goal?

BCNF and Lossless and Dependency-Preserving

(first choice)

3NF and Lossless and Dependency-Preserving

(second choice)

because sometimes we can’t preserve all dependencies
Reasoning about FDs

• To correctly decompose a relation, we need to reason about the FDs that hold in the relation.

• Given some FDs, we can usually infer additional FDs:
 - \{ssn \rightarrow did, \ did \rightarrow lot\} implies \{ssn \rightarrow lot\}
 - \{ssn \rightarrow name, phone\} implies \{ssn \rightarrow name, ssn \rightarrow phone\}
 - \{ssn \rightarrow name\} implies \{ssn \rightarrow name, ssn \rightarrow ssn\}

 Trivial dependency
Closure of Attributes

Given a relation $R(A_1,\ldots,A_n)$ and a set of FDs F. The closure of (A_1,\ldots,A_n) under F, denoted by $(A_1,\ldots,A_n)^+$, is the set of attributes B such that every relation that satisfies F, also satisfies $A_1,\ldots,A_n \rightarrow B$

In other words, $A_1,\ldots,A_n \rightarrow B$ follows from F
Computing Closure of Attributes

• We want to compute \(\{A_1,\ldots,A_n\}^+ \).

Initialize \(X = \{A_1,\ldots,A_n\} \)

Repeatedly search for some FD \(B_1,B_2,\ldots,B_n \rightarrow C \) such that \(B_i \in X \ \forall i \), and \(C \notin X \)

\(X = X \cup \{C\} \)

Until no more attributes can be added to \(X \)

Return \(X \)
Computing Closure of Attributes: Example

R(A,B,C,D,E,F)
FDs F = \{AB \rightarrow C, \ BC \rightarrow AD, \ D \rightarrow E, \ CF \rightarrow B\}

What is the closure of:
\{A,B\} + = \{A, B\}
= \{A,B,C\}
= \{A,B,C,D\}
= \{A,B,C,D,E\}

Now, we know that AB \rightarrow CDE
F ==> AB \rightarrow CDE, or AB \rightarrow CDE follows from F

Is AB a key for R?
Closure of Attributes and of FDs

- If we know how to compute the closure of any set of attributes, we can test if any given FD $A_1, \ldots, A_n \rightarrow B$ follows from a set of FDs F
 - Compute $\{A_1, \ldots, A_n\}^+$
 - If $B \in \{A_1, \ldots, A_n\}^+$, then $A_1, \ldots, A_n \rightarrow B$
Testing Derived FDs: Example

R(A,B,C,D,E,F)
FDs F = {AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B}

Does AB \rightarrow D follow from F?

\[
\begin{align*}
\{A,B\}^+ &= \{A, B\} \\
&= \{A,B,C\} & AB \rightarrow C \\
&= \{A,B,C,D\} & BC \rightarrow D \\
\text{Yes! } D &\in \{A,B\}^+
\end{align*}
\]

Does D \rightarrow A follow from F?

\[
\begin{align*}
\{D\}^+ &= \{D\} \\
&= \{D,E\} \\
\text{No! } A &\notin \{D\}^+
\end{align*}
\]
Attribute Closure and Keys

• \{A_1,\ldots,A_n\} is a superkey if and only if \{A_1,\ldots,A_n\}^+ is the set of all attributes of a relation.

• How would you test whether \{A_1,\ldots,A_n\}^+ is a minimal key?
 – Check if \{A_1,\ldots,A_n\}^+ \rightarrow all attributes, and then
 – Check that for no \(X = \{A_1,\ldots,A_n\} - \{A_i\}\), for each i, \(X^+ \rightarrow all attributes\).
Reasoning about FDs

- An FD f is *implied by* a set of FDs S if f holds whenever all FDs in S hold.

- Two sets of FDs S and T are *equivalent* if the set of relations satisfying S is the same as the set of relations satisfying T.

- A set of FDs S *follows* from a set of FDs T if every relation instance that satisfies all FDs in T also satisfies all the FDs in S.
Closure of FDs

• Let F be a set of FDs
$F^+ -- the closure of F, is the set of all FDs implied from F$

• Closure can be computed by:
 – using a set of inference rules: apply rules until no new FDs arise -- until a fixpoint is reached
 – Use algorithm for closing a set of attributes
Inference Rules

Armstrong’s Axioms

F1. Reflexivity: If Y is a subset of X, then X → Y
F2. Augmentation: If X → Y, then XZ → YZ
F3. Transitivity: If X → Y and Y → Z, then X → Z

Others

F4. Split/Decomposition: If X → AB, then X → A and X → B
F5. Union: If X → A and X → B, then X → AB
Example: Using Inference Rules

Prove that if $X \rightarrow Y$ and $Z \rightarrow W$, then $XZ \rightarrow YW$

1. $X \rightarrow Y$ (given)
2. $XZ \rightarrow YZ$ (1 and Augmentation)
3. $Z \rightarrow W$ (given)
4. $YZ \rightarrow YW$ (3 and Augmentation)
5. $XZ \rightarrow YW$ (2, 4, and Transitivity)
Is this a correct inference?

• If XY → Z, then X → Z and Y → Z
• title, year → studioName
 title → studioName
 year → studioName
 Incorrect!
Computing F^+ using Rules

$$F^+ = F$$

repeat

for each functional dependency f in F^+
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+
if f_1 and f_2 can be combined using transitivity
then add the resulting functional dependency to F^+

until F^+ does not change any further
Computing F+ using Attribute Closure

• Can you suggest an algorithm?
• Recall that:

If we know how to compute the closure of any set of attributes, we can test if any given FD $A_1, ..., A_n \rightarrow B$ follows from a set of FDs F

 – Compute $\{A_1, ..., A_n\}^+$
 – If $B \in \{A_1, ..., A_n\}^+$, then $A_1, ..., A_n \rightarrow B$
Practice Exercise

• R(A,B,C,D)
• F = AB→C, C→D, D→A
• What are all the non-trivial dependencies that follow from F?
Redundancy in FDs and Minimal Covers

• \(A \rightarrow B, \ B \rightarrow C, \ A \rightarrow C \)
 – \(A \rightarrow C \) is redundant – it can be inferred from \(A \rightarrow B, \ B \rightarrow C \)

• A *minimal cover* (or basis) for a set \(F \) of FDs is a set \(G \) of FDs s.t.:
 1. Every dependency in \(G \) is of the form \(X \rightarrow A \) and \(A \) is a single attribute
 2. \(F^+ = G^+ \)
 3. If \(H = (G - X \rightarrow A) \), then \(H^+ \neq F^+ \)

Every dependency is as small as possible, and required for the closure to be equal to \(F^+ \)
Computing Minimal Covers

- Given a set of FDs F:
 1. Put FDs in standard form
 - Obtain G of equivalent FDs with single attribute on the right side
 2. Minimize left side of each FD
 - For each FD in G, check each attribute on the left side to see if it can be deleted while preserving equivalence to F^+
 3. Delete redundant FDs
 - Check each remaining FD in G if it can be deleted while preserving equivalence to F^+
Consider the closures of all 15 nonempty sets of attributes.

- For the single attributes we have \(A^+ = A\), \(B^+ = B\), \(C^+ = ACD\), and \(D^+ = AD\). Thus, the only new dependency we get with a single attribute on the left is \(C \rightarrow A\).

- Now consider pairs of attributes: \(AB^+ = ABCD\), so we get new dependency \(AB \rightarrow D\). \(AC^+ = ACD\), and \(AC \rightarrow D\) is nontrivial. \(AD^+ = AD\), so nothing new. \(BC^+ = ABCD\), so we get \(BC \rightarrow A\), and \(BC \rightarrow D\). \(BD^+ = ABCD\), giving us \(BD \rightarrow A\) and \(BD \rightarrow C\). \(CD^+ = ACD\), giving \(CD \rightarrow A\).

- For the triples of attributes, \(ACD^+ = ACD\), but the closures of the other sets are each \(ABCD\). Thus, we get new dependencies \(ABC \rightarrow D\), \(ABD \rightarrow C\), and \(BCD \rightarrow A\).

- Since \(ABCD^+ = ABCD\), we get no new dependencies.

- The collection of 11 new dependencies mentioned above is: \(C \rightarrow A\), \(AB \rightarrow D\), \(AC \rightarrow D\), \(BC \rightarrow A\), \(BC \rightarrow D\), \(BD \rightarrow A\), \(BD \rightarrow C\), \(CD \rightarrow A\), \(ABC \rightarrow D\), \(ABD \rightarrow C\), and \(BCD \rightarrow A\).
Projecting Functional Dependencies

• To check for dependency preservation we need to determine which FDs hold for the decomposed relations—we can do this by projecting the dependencies

• Given a relation R with FDs F. Let S = \(\pi_A R \)

• What FDs hold in S?
 – All FDs \(f \) that follow from F, i.e., \(f \in F^+ \), that involve only attributes of S
Projecting FDs: Example

\[R(A,B,C,D) \]
\[\text{FDs: } A \rightarrow B, \ B \rightarrow C, \ \text{and} \ C \rightarrow D \]

Which FDs hold for \(S(A,C,D) \)?

\[\{A\}^+ = \{A,B,C,D\}, \text{ thus } A \rightarrow C \text{ and } A \rightarrow D \text{ hold in } S \]
\[A \rightarrow B \text{ makes no sense in } S! \]

\[\{B\}^+ = \{B,C,D\} \]
\[B \rightarrow \text{anything makes no sense in } S! \]

\[\{C\}^+ = \{C,D\}, \text{ thus } C \rightarrow D \text{ hold in } S \]

\[\{D\}^+ = \{D\}, \text{ thus } D \rightarrow D \text{ hold in } S \]

trivial dependency
Projecting FDs: Example (cont.)

R(A,B,C,D)
FDs: A \rightarrow B, \quad B \rightarrow C, \quad and \quad C \rightarrow D

Which FDs hold for S(A,C,D) ? A \rightarrow C, \quad A \rightarrow D, \quad C \rightarrow D

\{AC\}^+ = \{A,B,C,D\}

\{A \text{ anything}\} \text{ will add nothing new – everything will follow by augmentation}

\{CD\}^+ = \{C,D\}

nothing new

Stop!
Decomposition and Normal Forms
BCNF (reminder)

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F^+ of the form $A \rightarrow B$, where $A \subseteq R$ and $B \subseteq R$, at least one of the following holds:

- $A \rightarrow B$ is trivial (i.e., $B \subseteq A$)
- A is a superkey for R

The left side of every nontrivial FD must be a superkey
BCNF: Example

• $R = (A, B, C)$
 $F = \{A \rightarrow B$
 $\quad B \rightarrow C\}$
 Key = \{A\}

• R is not in BCNF –
 – $B \rightarrow C$ is non-trivial and B is not a superkey
Decomposition into BCNF

• We can break any relation schema R into a collection of subsets Si of its attributes s.t.:
 – Si is in BCNF
 – We don’t lose information, i.e., we can reconstruct R from Si

• Suppose $A_1, A_2, \ldots, A_n \rightarrow B_1, \ldots, B_m$ violates BCNF. Construct 2 overlapping relations R1 and R2:
 – $R_1 = A \cup B$
 – $R_2 = (R - (B - A))$

Diagram:
- **R1** contains **As** (attributes involved in the violation) and **Bs** (all attributes not involved in the FD).
- **R2** contains **As** and **Others** (left side + all attributes not involved in the FD).
BCNF: Example

- \(R = (A, B, C) \)

 \[F = \{ A \rightarrow B, B \rightarrow C \} \] – violates BCNF

 Key = \{A\}

- \(R \) is not in BCNF – B is not a superkey

- Decomposition \(R_1 = (B, C), R_2 = (A, B) \), \(R_1 \) and \(R_2 \) in BCNF

All attributes involved in the violation

Left side + all attributes not involved in the FD
Computing a BCNF Decomposition

\[\text{result} := \{R\}; \]
\[\text{done} := \text{false}; \]
\[\text{compute } F^+; \]
\[\text{while (not done) do} \]
\[\quad \text{if (there is a schema } R_i \text{ in result that is not in BCNF)} \]
\[\quad \quad \text{then begin} \]
\[\quad \quad \quad \text{let } A \rightarrow B \text{ be a nontrivial functional dependency that holds on } R_i \]
\[\quad \quad \quad \text{such that } A \rightarrow R_i \text{ is not in } F^+, \]
\[\quad \quad \quad \text{and } A \cap B = \emptyset; \]
\[\quad \quad \quad \text{result} := (\text{result} – R_i) \cup (R_i – B) \cup (A, B); \]
\[\quad \text{end} \]
\[\text{else done := true;} \]
Testing for BCNF

- To check if a non-trivial dependency $A \rightarrow B$ causes a violation of BCNF
 1. Compute A^+
 2. Verify that A is a superkey of R.

- To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F
 - If none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F^+ will cause a violation of BCNF either.

- However, using only F is incorrect when testing a relation in a decomposition of R
Testing for BCNF: Example

• Consider \(R (A, B, C, D) \), with \(F = \{ A \rightarrow B, B \rightarrow C \} \)

• Decompose \(R \) into \(R_1(A,B) \) and \(R_2(A,C,D) \)
 – \(R_1 \) is in BCNF. Why?
 • \(A \rightarrow B \) holds in \(R_1 \) and \(A^+ = AB \)
 – Since neither of the dependencies in \(F \) contain only attributes from \((A,C,D)\) , \textit{does this mean \(R_2 \) is in \textit{ BCNF}?}
 – \(A \rightarrow C \) in \(F^+ \) holds in \(R_2 \) and \(A \) is not a superkey for \(R_2 \)
 – \(R_2 \text{ is NOT in } \textit{BCNF!} \)
Testing for BCNF: An Easier Check

• Computing every dependency in $F+$ can be unnecessary

• To verify if relation R_i in a decomposition of R is in BCNF, for each subset s of attributes in R_i, check that
 – Either s^+ contains no attribute of $R_i - s$, or
 – $s^+ = R_i$, i.e., s is a superkey for R_i

• Try to prove that this test is sound!
Testing for BCNF: Another Example

\[F = \{ A \rightarrow B, \ B \rightarrow C \} \]
\[R = \{ R_1(A,B), \ R_2(A,C,D) \} \]

- Is \(R_1 \) in BCNF?
 - \(A^+ = ABC \quad R_1 - A = B, \) but A is a superkey for \(R_1 \)
 - \(B^+ = BC \quad R_1 - B = A, \) BC \(\cap \) A = \(\emptyset \)
 - \(AB^+ = AB \quad AB \) is a superkey

\[s^+ \cap (R_i - s) = \emptyset \text{ or } s \text{ is a superkey for } R_i \]
Testing for BCNF: Another Example

\(F = \{ \ A \rightarrow B, \ B \rightarrow C \} \)

\(R = \{ \ R_1(A,B), \ R_2(A,C,D) \} \)

- Is \(R_2 \) in BCNF?
 - \(A^+ = ABC \quad R_2 - A = CD \), intersection contains C
 - and A is not superkey of \(R_2 \)

 Immediately discover \(R_2 \) is not in BCNF!

- Which FD violates BCNF?

 \[\begin{align*}
 ABC \cap (ACD - A) &= \emptyset \quad \text{% Intersection is not empty!} \\
 ABC \cap CD &= C \\
 A \rightarrow C &\text{ holds and violates BCNF} \quad \text{% A is not superkey}
 \end{align*} \]
Algorithm for Lossless Join Decomposition into BCNF Relations

1. set $D := \{ R \}$ (the current set of relations)

2. while there is a relation in R that is not in BCNF
 begin
 choose a relation schema R_i that is not in BCNF
 find an FD $X \rightarrow Y$ in R_i that violates BCNF
 replace R_i in D by two relations: $(R_i - Y)$ and $(X \cup Y)$
 end;

3. identify dependencies that are not preserved $(X \rightarrow A)$.
 add XA as a table to the set D
Computing a BCNF Decomposition

\[
\text{result} := \{R\};
\]
\[
\text{done} := \text{false};
\]
\[
\text{compute } F^+;
\]
\[
\text{while (not done) do}
\]
\[
\text{if (there is a schema } R_i \text{ in } \text{result that is not in BCNF)}
\]
\[
\text{then begin}
\]
\[
\text{let } A \rightarrow B \text{ be a nontrivial functional dependency that holds on } R_i
\]
\[
\text{such that } A \rightarrow R_i \text{ is not in } F^+,
\]
\[
\text{and } A \cap B = \emptyset;
\]
\[
\text{result} := (\text{result} – R_i) \cup (R_i – B) \cup (A, B);
\]
\[
\text{end}
\]
\[
\text{else done} := \text{true};
\]
Decomposing into BCNF: Example

- \(R = \{CSJDPQV\} \)
- \(F = \{SD \rightarrow P; J \rightarrow S; JP \rightarrow C\} \), Key = \{C\}

Need to check for BCNF at each step!
Note: any 2-attribute relation is in BCNF (see pg 89 in textbook)
Decomposing into BCNF: Another Example

- Movies = \{title, year, length, studio, starName\}
- \(F = \{\text{title, year} \rightarrow \text{length, studio}\} \),
- Key = \{title, year, starName\}

Movies = \{title, year, length, studio\}
StarsIn = \{title, year, starName\}
Decomposition: Desirable Properties

• **Losslessness:** don’t throw any information away
 – \((R_1 \bowtie R_2) = R\)
 – Recall that: a decomposition is lossless if the attributes in common are a key for *at least one* of the relations \(R_1\) and \(R_2\)
 – BCNF decomposition is lossless: \(R_i\) is replaced by \((R_i - B)\) and \((A, B)\), and \(A \rightarrow B\) holds in \((A,B)\)

• **Dependency preservation:** all of the non-trivial FDs each end up in just one relation
 – Not split across two or more relations
 – Cannot guarantee this for BCNF…
What is “Dependency Preserving”

Suppose F is the original set of FDs and G is set of projected FDs after decomposition

The decomposition is dependency preserving if $F^+ \equiv G^+$. That is, the two closures must be equivalent.
A relation that cannot be decomposed into BCNF in a dependency-preserving manner

\[R = \text{addr(city, state, zip)} \]

FDs = city state \(\rightarrow \) zip, zip \(\rightarrow \) state

Decomposition: R1(zip,state), R2(city,zip)

\[\text{city state} \rightarrow \text{zip} \] does not hold in R2

Problem: If the DBMS only enforces keys (and not FDs directly), this FD won’t be enforced

Testing \text{city state} \rightarrow \text{zip} requires a join: R1 JOIN R2

Is it possible to guarantee dependency preservation?
An Unenforceable FD

Join tuples with equal zip codes.

<table>
<thead>
<tr>
<th>state</th>
<th>zip</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>02138</td>
<td>Cambridge</td>
<td>02138</td>
</tr>
<tr>
<td>Mass</td>
<td>02139</td>
<td>Cambridge</td>
<td>02139</td>
</tr>
</tbody>
</table>

Although no FD’s were violated in the decomposed relations, FD state city \(\rightarrow \) zip is violated by the database as a whole.
3NF: The next best to BCNF

• Recall that: A relation schema \(R \) is in third normal form (3NF) if for all:

\[
A \rightarrow B \quad \text{in} \quad F^+
\]

at least one of the following holds:

- \(A \rightarrow B \) is trivial (i.e., \(B \subseteq A \))
- \(A \) is a superkey for \(R \)
- Each attribute \(t \) in \(B \) – \(A \) is contained in a candidate key for \(R \)

BCNF

relaxation of BCNF to ensure dependency preservation
Any relation can be decomposed into 3NF in a dependency-preserving manner

$R = \text{addr}(\text{city}, \text{state}, \text{zip})$

$\text{FDs} = \text{city state} \rightarrow \text{zip}, \text{zip} \rightarrow \text{state}$

R is in 3NF

(city state) is a superkey

(state) is contained in a key

R preserves all FDs but …

there is some redundancy in this schema
3NF: Example

\[R = (J, K, L) \quad FDs = \{JK \rightarrow L, L \rightarrow K\} \]

- Two candidate keys: JK and JL
- \(R \) is in 3NF
 - \(JK \rightarrow L \)
 - JK is a superkey
 - \(L \rightarrow K \)
 - K is contained in a candidate key

- BCNF decomposition has (JL) and (LK)
 - Testing for \(JK \rightarrow L \) requires a join!

- There is some redundancy in this schema
- Trade-off: cost (or ability!) to check FD vs. redundancy
3NF and Redundancy

• If $X \rightarrow A$ causes a 3NF violation then
 – X is a proper subset of some key K – *partial dependency* (X,A) stored redundantly; or
 – X is not a proper subset of some key K – *transitive dependency* $K \rightarrow X \rightarrow A$

• Examples
 – Partial dependency:
 `RESERVES(PERSON, ROOM, DATE, CREDIT)`
 Key = `PERSON, ROOM, DATE; PERSON\rightarrow CREDIT`

 – Transitive dependency:
 `EMPLOYEE (SSN, NAME, RATING, HOURLY_WAGE, JOB_DESC)`
 `SSN \rightarrow RATING \rightarrow HOURLY_WAGE`
3NF: Example

\[R = (J, K, L) \quad \text{FDs} = \{JK \rightarrow L, L \rightarrow K\} \]

- Two candidate keys: \(JK \) and \(JL \)
- \(R \) is in 3NF
 - \(JK \rightarrow L \)
 - \(JK \) is a superkey
 - \(L \rightarrow K \)
 - \(K \) is contained in a candidate key

- BCNF decomposition has \((JL)\) and \((LK)\)
 - Testing for \(JK \rightarrow L \) requires a join!

- There is some redundancy in this schema
- Trade-off: cost (or ability!) to check FD vs. redundancy
Decomposition into 3NF

- Apply BCNF decomposition
- Identify the set N of dependencies that is not preserved
- For each $X \rightarrow A$ in N, add relation XA to schema

- Note: need to work with the \textit{minimal basis} of the functional dependencies!
Dependency-Preserving Decomposition into 3NF: Example

- $R = \text{CSJDPQV}$
- $F = \{\text{SD} \rightarrow \text{P}; \text{J} \rightarrow \text{S}; \text{JP} \rightarrow \text{C}\}$, Key = $\{\text{C}\}$
- Decomposition: SDP, SJ, CJDQV, CJP
- Note that each relation in decomposition is in BCNF
Dependency-Preserving Decomposition into 3NF: Example

- \(R = CSJDPQV \)
- \(F = \{SD \rightarrow P; J \rightarrow S; JP \rightarrow C\} \), Key = \{C\}

JP→C is not preserved
Since F is a minimal cover, add CJP to the schema
Minimal Covers and Efficiency

• When relation is updated, DBMS must check whether the update violates any FD
• Can reduce the effort spent checking for violations, by testing a smaller (but equivalent!) set of dependencies
Summary: BCNF and 3NF

- It is always possible to decompose a relation into relations in 3NF and
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
 - the decomposition is lossless
 - it may not be possible to preserve dependencies
- Trade-off: cost (or ability!) to check FDs vs. redundancy
Constraints on an Entity Set

EMPLOYEE (SSN, NAME, RATING, HOURLY_WAGE, JOB_DESC)
RATING → HOURLY_WAGE

• This FD leads to redundant storage, but…
• It cannot be expressed in the ER model -- only keys can be expressed in the ER model
• Having formal techniques to identify the problem with this design is very useful
 – Especially for large schemas – schemas with more than 100 tables are not uncommon!
Identifying Attributes of Entities

Workers(ssn,name,lot,did,since)
Departments(did,dname,budget)

Constraint: Employees are assigned parking lots based on their department, and all employees in a given dept are assigned to the same lot

\[\text{did} \rightarrow \text{lot} \]

not expressible in ER!

Workers(ssn,name,did,since)
DeptLots(did,lot)
Identifying Attributes of Entities (cont.)

Departments(did, $dname$, $budget$)
Workers(ssn, $name$, did, $since$)
DeptLots(did, lot)

• Can associate a lot with a dept, even if dept has no employees
• Can add employee to dept even if there is no lot assigned to dept

Departments(did, $dname$, $budget$, lot)
Redundancy for Performance

• Schema refinement fragments a relation
• Queries may require *joining* the fragments – this can be expensive
 – E.g., every time an account is accessed, need to display name of the customer with account information, account JOIN depositor

• Denormalize for performance
 – Store a relation account JOIN depositor

• A better alternative – *why?*
 – CREATE VIEW ACC_DEP AS
 SELECT * FROM account, depositor
 WHERE account.id = depositor.acc_id
Decomposition (reminder)

• $R = (A, B, C) \\
F = \{A \rightarrow B, B \rightarrow C\}$
 – Can be decomposed in two different ways

• $R_1 = (A, B), \ R_2 = (B, C)$
 – Lossless-join decomposition:
 $R_1 \cap R_2 = \{B\}$ and $B \rightarrow BC$
 – Dependency preserving

• $R_1 = (A, B), \ R_2 = (A, C)$
 – Lossless-join decomposition:
 $R_1 \cap R_2 = \{A\}$ and $A \rightarrow AB$
 – Not dependency preserving
 (cannot check $B \rightarrow C$ without computing $R_1 \text{join} R_2$)
Some Known Algorithms

• Compute F^+
• Compute attribute closure
• Find a minimal cover for a set of FDs
• Dependency-preserving decomposition into 3NF
• Lossless join decomposition into BCNF
• Lossless join & dependency preserving decomposition into 3NF
Computing Attribute Closure

- Given a set of attributes \(\alpha \), define the closure of \(\alpha \) under \(F \) (denoted by \(\alpha^+ \)) as the set of attributes that are functionally determined by \(\alpha \) under \(F \):
 \[
 \alpha \rightarrow \beta \text{ is in } F^+ \implies \beta \subseteq \alpha^+
 \]

- Algorithm to compute \(\alpha^+ \), the closure of \(\alpha \) under \(F \)

 \[
 \begin{aligned}
 \text{result} &:= \alpha; \\
 \text{while (changes to result) do} \\
 \text{for each } \beta \rightarrow \gamma \text{ in } F \text{ do} \\
 \text{begin} \\
 \text{if } \beta \subseteq \text{result} \text{ then } \text{result} := \text{result} \cup \gamma \\
 \text{end}
 \end{aligned}
 \]
Example

- \(R = (\text{branch-name, branch-city, assets, customer-name, loan-number, amount}) \)
 \[F = \{\text{branch-name} \rightarrow \text{assets branch-city} \}
 \text{loan-number} \rightarrow \text{amount branch-name}\} \]
 \(\text{Key} = \{\text{loan-number, customer-name}\} \)

- Decomposition
 - \(R_1 = (\text{branch-name, branch-city, assets}) \)
 - \(R_2 = (\text{branch-name, customer-name, loan-number, amount}) \)
 - \(R_3 = (\text{branch-name, loan-number, amount}) \)
 - \(R_4 = (\text{customer-name, loan-number}) \)

- Final decomposition
 \(R_1, R_3, R_4 \)