
Sample Mid-Term Exam 1

CS 5510, Fall 2011

September 22

Instructions: You have eighty minutes to complete this open-book, open-note, closed-computer exam.
Please write all answers in the provided space, plus the back of the exam if necessary.

1) Given the following grammar:

〈weed〉 = ’leaf

| (list ’branch 〈weed〉 〈weed〉)
| (list ’stem 〈weed〉)

Which of the following expressions are examples of 〈weed〉?

a) (list ’leaf)

b) (list ’stem)

c) (list ’branch (list ’branch ’leaf ’leaf) ’leaf)

d) (list ’stem ’leaf)

2) Explain why the following is a 〈weed〉:

(list ’branch (list ’stem ’leaf) (list ’branch ’leaf ’leaf))

1



3) Provide a define-type declaration for Weed that is a suitable representation for 〈weed〉s.

4) Implement the function weed-forks, takes a 〈weed〉 and returns the number of branches that it
contains. Your implementation must follow the shape of the data definition.

2



5) Given the following expression in the book language with with and fun:

{with {g {fun {z} {f z}}}

{with {f {fun {z} {g z}}}

{with {y {with {f {fun {z} {f {+ z x}}}}

{f y}}}

{+ y q}}}}

a) Draw arrows on the above expression from each bound variable to its binding occurrence.

b) List the free variables: and bound variables:

6) Given the following expression:

{with {g {fun {x} {fun {y} {+ y x}}}}

{with {x 13}

{with {f {g 6}}

{f x}}}}

Describe a trace of the evalaution in terms of arguments to an interp function for every call. (There
will be 16 calls.) The interp function takes two arguments — an expression and a deferred substitution
— so show both for each call. Assume a variant of interp that interprets with directly. For number,
variable, and fun expressions, show the result value, which is immediate. Use the back of the exam for
additional space, and use the following abbreviations to save time:

E0 = the whole expression
E1 = {fun {x} {fun {y} {+ y x}}}
E2 = {with {x 13} {with {f {g 6}} {f x}}}
E3 = {with {f {g 6}} {f x}}

3



Answers

1) (c) and (d)

2) Since ’leaf is a 〈weed〉 by line 1 of the definition, then by line 3, (list ’stem ’leaf) is a 〈weed〉, and
by line 2, (list ’branch ’leaf ’leaf) is a 〈weed〉. Finally, then, by line 2 again, (list ’branch

(list ’stem ’leaf) (list ’branch ’leaf ’leaf)) is a 〈weed〉.

3) (define-type Weed

[leaf]

[stem (rest Weed?)]

[branch (left Weed?)

(right Weed?)])

4) ; weed-forks : Weed -> num

(define (weed-forks w)

(type-case Weed w

[leaf () 0]

[stem (rest) (weed-forks rest)]

[branch (l r) (+ 1

(weed-forks l)

(weed-forks r))]))

(test (weed-forks (leaf)) 0)

(test (weed-forks (stem (leaf))) 0)

(test (weed-forks (stem (branch (leaf) (leaf)))) 1)

(test (weed-forks (branch (branch (leaf) (leaf)) (leaf))) 2)

5) v-----,

{with {g {fun {z} {f z}}}

^-------------,

v---+-,

{with {f {fun {z} {g z}}}

^-----------------------,

v---+----,

{with {y {with {f {fun {z} {f {+ z x}}}}

-^ ,---^

| {f y}}}

|

{+ y q}}}}

Free: f, x, y, q Bound: z, g, f, y

6)

expr = E0

subs = (mtSub)

expr = E1

subs = (mtSub)

result = (closureV ’x {fun {y} {+ y x}} (mtSub)) = C1

expr = E2

subs = (aSub ’g C1 (mtSub)) = S1

4



expr = 13

subs = S1

result = (numV 13)

expr = E3

subs = (aSub ’x (numV 13) S1) = S2

expr = {g 6}
subs = S2

expr = g

subs = S2

result = C1

expr = 6

subs = S2

result = (numV 6)

expr = {fun {y} {+ y x}}
subs = (aSub ’x (numV 6) (mtSub)) = S3

result = (closureV ’y {+ y x} S3) = C2

expr = {f x}
subs = (aSub ’f C2 S2) = S4

expr = f

subs = S4

result = C2

expr = x

subs = S4

result = (numV 13)

expr = {+ y x}
env = (aSub ’y (numV 13) S3) = S5

expr = y

env = S5

result = (numV 13)

expr = x

env = S5

result = (numV 6)

5


