Shrinking the Language

- We've seen that with is not really necessary when we have fun...
- ... and rec is not really necessary when we have fun...
- ... and neither, it turns out, are fancy things like numbers, +, - or if0

The following material won't show up on any
homework or exam

LC Grammar

$$
\begin{aligned}
& \text { <LC> ::= <id> } \\
& \text { | }\{<L C><L C>\} \\
& \text { | \{fun }\{<i d>\}<L C>\}
\end{aligned}
$$

Implementing Programs with LC

Can you write a program that produces the identity function?
\{fun $\{x\} x\}$

Implementing Programs with LC

Can you write a program that produces zero?

What's zero? I only know how to write functions!
Turing Machine programmer: What's a function? I only know how to write 0 or 1!

We need to encode zero - instead of agreeing to write zero as 0 , let's agree to write it as

$$
\{\text { fun }\{f\}\{\text { fun }\{\mathbf{x}\} \times x\}
$$

This encoding is the start of Church numerals...

Implementing Numbers with LC

Can you write a program that produces zero?

```
{fun {f} {fun {x} x}}
```

... which is also the function that takes \mathbf{f} and \mathbf{x} and applies \mathbf{f} to \mathbf{x} zero times

From now on, we'll write zero as shorthand for the above expression:

$$
\text { zero } \stackrel{\text { def }}{=}\{f u n\{f\} \text { fun }\{\mathbf{x}\} \mathbf{x}\}\}
$$

Implementing Numbers with LC

Can you write a program that produces one?

$$
\text { one } \stackrel{\text { def }}{=}\{f u n\{ \pm\}\{f u n\{\mathbf{x}\}\{ \pm \mathbf{x}\}\}\}
$$

... which is also the function that takes \mathbf{f} and \mathbf{x} and applies $£$ to \times one time

Implementing Numbers with LC

Can you write a program that produces two?

```
two \stackrel{\mathrm{ off {fun {f} {fun {x} {f {f x}}}}}}{=}={
```

... which is also the function that takes \mathbf{f} and \mathbf{x} and applies f to x two times

Implementing Booleans with LC

Can you write a program that produces true?

```
true 拃 {fun {x} {fun {y} x}}
```

... which is also the function that takes two arguments and returns the first one

Implementing Booleans with LC

Can you write a program that produces false?

$$
\text { false } \stackrel{\text { dit }}{=}\{\text { fun }\{\mathrm{X}\}\{\text { fun }\{\mathrm{y}\} \mathrm{y}\}\}
$$

... which is also the function that takes two arguments and returns the second one

Implementing Branches with LC

```
true }\stackrel{\mathrm{ def }}{=}{fun {x} {fun {y} x}
false }\stackrel{\mathrm{ def }}{=}{fun {x} {fun {y} y}
zero }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} x}}
one }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} {f x}}
two \stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} {f {f x } }}}
```

Can you write a program that produces zero when given true, one when given false?

```
{fun {b} {{b zero} one}}
```

... because true returns its first argument and false returns its second argument
\{\{fun $\{b\}$ \{\{b zero\} one\}\} true\} \Rightarrow \{\{true zero\} one\} \Rightarrow zero
$\{\{$ fun $\{b\}$ \{ $b \mathrm{~b}$ zero\} one $\}$ false $\} \Rightarrow$ \{\{false zero\} one $\}$

$$
\Rightarrow \text { one }
$$

Implementing Pairs

Can you write a program that takes two arguments and produces a pair?

```
cons \stackrel{def {fun {x} {fun {y}}{=}={
    {fun {b} {{b x} y}}}}
```

Examples:

```
{{cons zero} one} }=>\mathrm{ {fun {b} {{b zero} one}}
{{cons two} zero} }=>\mathrm{ {fun {b} {{b two} zero}}
```


Implementing Pairs


```
    {fun {b} {{b x} y}}}}
```

Can you write a program that takes a pair and returns the first part?

Can you write a program that takes a pair and returns the rest?

```
first \stackrel{def {fun {p} {p true} }}{=}={
rest \stackrel{def {fun {p} {p false}}}{=}{\mp@code{flu}
```

Example:

```
\{first \{\{cons zero\} one\}\} \(\Rightarrow\) \{first \{fun \(\{b\}\) \{\{b zero\} one\}\}\}
    \(\Rightarrow\{\{\) fun \(\{b\}\{\{b\) zero\} one \(\}\}\) true \(\}\)
    \(\Rightarrow\) \{\{true zero\} one\}
    \(\Rightarrow\) zero
```


Implementing Arithmetic

```
zero }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} x}
one }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} {f x } }
two \stackrel{\mathrm{ def {fun {f} {fun {x} {f {f x } } }}}}{=}{\mp@code{fun}
```

Can you write a program that takes a number and adds one?


```
    {fun {g} {fun {y}
        {g {{n g} y}}}}}
```

Example:

```
{add1 zero} }=>\mathrm{ {fun {g} {fun {y}
    {g {{zero g} y}}}}
    = {fun {g} {fun {y}
    {g {{{fun {f} {fun {x} x}} g} y}}}}
    \Leftrightarrow {fun {g} {fun {y}
    {g y}}}
    = one
```


Implementing Arithmetic

Can you write a program that takes a number and adds two?

```
add2 \stackrel{aff}{=}{fun {n} {add1 {add1 n}}}
```


Implementing Arithmetic

Can you write a program that takes a number and adds three?
add3 $\stackrel{\text { def }}{=}\{$ fun $\{\mathrm{n}\}$ \{add1 \{add1 \{add1 n$\}\}\}\}$

Implementing Arithmetic

```
zero }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} x}}
one }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} {f x } }
```


Can you write a program that takes two numbers and adds them?
add $\stackrel{\text { def }}{=}\{$ fun $\{n\}\{$ fun $\{m\}\{\{n$ add1 $\} m\}\}$
... because a number n applies some function n times to an argument

Implementing Arithmetic

```
zero }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} x}}
one }\stackrel{\mathrm{ def }}{=}{fun {f} {fun {x} {f x } }
```


Can you write a program that takes two numbers and multiplies them?
mult $\stackrel{\text { def }}{=}\{$ fun $\{n\}$ \{fun $\{m\}\{\{n$ \{add $m\}\}$ zero $\}\}$
... because adding number m to zero n times produces $n \times m$

Implementing Arithmetic

Can you write a program that tests for zero?
iszero $\stackrel{\text { def }}{=}$ \{fun $\{n\}\{\{n$ \{fun $\{x\}$ false $\}\}$ true $\}$
because applying \{fun $\{\mathbf{x}\}$ false\} zero times to true produces true, and applying it any other number of times produces false

Implementing Arithmetic

Can you write a program that takes a number and produces one less?

```
shift \stackrel{ def {fun {p}}{=}{\mp@code{fun}
    {{cons {rest p}} {add1 {rest p}}}}
sub1 \stackrel{\mathrm{ def }}{=}{fun {n}
        {first
        {{n shift} {{cons zero} zero}}}}
```

And then subtraction is obvious...

Implementing Factorial

```
mk-rec \stackrel{def }{=}{\mathrm{ fun {body}}
    {{fun {fX} {fX fX}}
    {fun {fX}
    {{fun {f} {body f}}
        {fun {x} {{廷 fX} x}}}}}}
```

Can you write a program that computes factorial?
\{mk-rec
\{fun \{fac\}
\{fun $\{n\}$
\{\{\{iszero n$\}$ one\} $\{\{$ mult $n\}$ \{fac \{sub1 $n\}\}\}\}\}\}\}$
... and when you can write factorial, you can probably write anything.

