CS 5510
Programming Language Concepts

Fall 2009

Instructor: Matthew Flatt

Course Detalls

http://ww. eng. ut ah. edu/ ~cs5510/

Programming Language Concepts

This course teaches concepts in two ways:

Programming Language Concepts

This course teaches concepts in two ways:

By implementing interpreters

© new concept O new interpreter

Programming Language Concepts

This course teaches concepts in two ways:

By implementing interpreters

© new concept O new interpreter

By using Scheme and variants

© we don’t assume that you already know
Scheme

Interpreters

An interpreter takes a program and produces a
result

© DrScheme
© x86 processor

© desktop calculator
© bash

© Algebra student

Interpreters

An interpreter takes a program and produces a
result

© DrScheme
© X86 processor

© desktop calculator
© bash

© Algebra student

A compiler takes a program and produces another
program

In the terminology of programming languages, someone who
translates Chinese to English is a compiler!

Interpreters

An interpreter takes a program and produces a
result

© DrScheme
© X86 processor

© desktop calculator
© bash

© Algebra student

A compiler takes a program and produces another
program

In the terminology of programming languages, someone who
translates Chinese to English is a compiler!

So, what’s a program?

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

[progl]l = [defn® [éxprQ]
[defn] 1= [OA{OAD = [éxprl]
[éxprl] = ([éxpriH [exprl)
([éxprl}F [éxprD)
[(Id[({[exprD)

[id[]

(humL]

[id[] a variable name: f, x, vy, z, ...
um] = anumber: 1,42, 17, ...

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

(progL] ::=
[defn] ::=
[exprl] =

(d]
(hum] ::=

[defn® [éxpr(]
(d[(0dD) = [exprl]
([éxprlH+ [éxprD)
([éxprl}F [éxprD)
[(Id[({[exprD)

[id[]

(humL]

a variable name: f, x, vy, z, ...
anumber: 1,42, 17, ...

Each meta-variable, such as [progL] defines a set

10

Using a BNF Grammar

[id[] .= avariable name: f, x, vy, z, ...

um] = anumber: 1,42, 17, ...
The set OdLls the set of all variable names

The set lmumLis the set of all numbers

11

Using a BNF Grammar

[id[] .= avariable name: f, x, vy, z, ...
um] = anumber: 1,42, 17, ...

The set LdLs the set of all variable names

The set LhumLlis the set of all numbers

To make an example member of lhiumL] simply pick
an element from the set

12

Using a BNF Grammar

[id[] .= avariable name: f, x, vy, z, ...
um] = anumber: 1,42, 17, ...

The set LdLs the set of all variable names

The set lmumLis the set of all numbers

To make an example member of lhumL] simply pick
an element from the set

1 0 IhumLl
198 U humL]

13

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)
[(d[{LexprD)

[d]

(hum(L]

The set [éxprLis defined in terms of other sets

14

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)
[(d[{LexprD)

[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text

15

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)
[(d[{LexprD)

[d]

[um(] -

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text

16

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)
[(d[{LexprD)

[d]

[um(] -

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable
/7 1 ImumtL]

© combine the examples with literal text

17

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)
[(d[{LexprD)

[d]

[um(] -

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable
7 O hum(
© combine the examples with literal text

[L [exprld

18

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)

[[{[exprD) -
[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text

19

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)

[[{[exprD) -
[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable

f O (dd

© combine the examples with literal text

20

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)

[[{[exprD) -
[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable
f O 0dO 7 O [exprd

© combine the examples with literal text

21

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)

[[{[exprD) -
[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable
f O dO 7 O [@xpr
© combine the examples with literal text

f(7) U [éxprld

22

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)

[[{[exprD) -
[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable
f O 0dO f(7) O lexprd]

© combine the examples with literal text

23

Using a BNF Grammar

[éxprl] = ([éxprlH [éxpri)
([éxprlF [éxpri)

[[{[exprD) -
[d]

(hum(L]

To make an example [éxprL]
© choose one case in the grammar
© pick an example for each meta-variable
f O 0dO f(7) O lexprd]
© combine the examples with literal text

f(f(7)) U [éxprQd

24

Using a BNF Grammar

[progl]l = [defn# [éxprl]
[defnl] = [AL{OAD) = [éxprl]

f(x) = (x + 1) U [defn[]

25

Using a BNF Grammar

[progl] ::= [defn® [éxprl]
[defnl] = [AL{OAD) = [éxprl]

f(x) = (x + 1) U [defn[]
To make a [progLpick some number of [defn[s
(x +y) U progl]

f(x) = (x +1)
a(y) =f((y - 2)) U progl]
g(7)

26

Programming Language

A programming language is defined by
e a grammar for programs

* rules for evaluating any program to produce a
result

27

Programming Language

A programming language is defined by
e a grammar for programs

* rules for evaluating any program to produce a
result

For example, Algebra evaluation is defined in terms
of evaluation steps:

(2 + (7 - 4)) - (2+3) - S

28

Programming Language

A programming language is defined by
e a grammar for programs

* rules for evaluating any program to produce a
result

For example, Algebra evaluation is defined in terms
of evaluation steps:

f(x)=(x+1)
f(10) L (10+1) - 11

29

Evaluation

e Evaluation - is defined by a set of
pattern-matching rules:
(2 + (7 -4)) 5 (2 +3)
due to the pattern rule

(T-4).. - ..3.

30

Evaluation

e Evaluation - is defined by a set of
pattern-matching rules:

fx)=(x +1)
f(10) — (10 + 1)

due to the pattern rule
.. ld(0d) = [éxprld ...
.. Id([éxpr) ... - ... [éxpr(3 ...

where [exprid is [éxprld with 004 replaced by
[éxprid

31

Pattern-Matching Rules for Evaluation

 Rule 1
... ld(0d[3) = [éxprl ...
... Ld([éxprl3) ... - ... [éxpr(3 ...

where [exprid is [éxprld with 004 replaced by
[éxprid

32

Pattern-Matching Rules for Evaluation

e Rule 1

... ld(0d[3) = [éxprl ...
... Ld([éxprl3) ... - ... [éxpr(3 ...

where [exprid is [éxprld with 004 replaced by
[éxprid

e Rules 2 - o«

. (0+0)... -~ .0 . (0-0)... - .0
L (1+0) ... - .1 L (1-0)... - .1
L(O0+1) ... - .1 . (0-1) ... & ..-1
L (2+0)... o .2 (2-0)... o .2

etc. etc.

33

Pattern-Matching Rules for Evaluation

e Rule 1

... ld(0d[3) = [éxprl ...
... Ld([éxprl3) ... - ... [éxpr(3 ...

where [exprid is [éxprld with 004 replaced by
[éxprid

e Rules 2 - o«

. (0+0)... -~ ..0.. ..(0-0)... -~ ..0...

L (1+0) ... - 1. L (1-0)... & 1.

L (0+1) ... - .1 o (0-1) .. & 1.

(2+0) ... - 2. L (2-0)... & 2.
etc. etc.

When the interpreter is a program instead of an Algebra
student, the rules look a little different

HW 1

On the course web page:

Write an interpreter for a small language of string
manipulations

Assignment is due Monday

Your code may be featured in class on Monday

35

