
CS 5480/6480: Computer Networks – Spring 2012
Programming Assignment 1

Due by 11:59:59 PM on February 14th 2012

Important:
• No cheating will be tolerated.
• No late submissions.

Total Points for this homework: 100

The goal of your programming assignment is to build a very simple peer-to-peer system
involving three nodes using sockets. You need to write programs that run on three nodes
and achieve the following tasks.
• Elect a node among the three as the leader. The leader node is a peer but keeps track

of the files available on the p2p network together with the IP addresses and port
numbers from where they could be obtained.

• Each non-leader node sends information about the files it has and the port numbers
from where they could be obtained to the leader. When a peer requires a file, it
queries the leader for the file and if the peer has the information about the file, it
replies back with the filename, IP address and port number.

• Once a peer finds out the IP address and port number from where a desired file could
be obtained it sets up a connection to that IP address and port and obtains the file.

Each node runs two programs (you can choose to write one program with multiple
threads). The first program carries out the following.

Leader Election: Assign identification numbers to each node, setup TCP connections
among the three nodes, exchange the identification numbers and choose the node with the
lowest identity as the leader. The other two peers should now remove any connections
they have between themselves. In setting up the TCP connections you might have to
order the server and client functionality across the three nodes (if you use multi-
threading, this will not be an issue).

Inform the leader about files that peers are willing to share: These peers then send the
information about the files they want to share to the leader especially identifying the IP
address and port number from which the files could be obtained.

Query the leader for a required file: One of the two non-leaders sends a query to the
leader seeking a file that is actually available at the other peer (but the peer initiating the
query does not know that). The leader replies back with the filename, IP address and port
number. If the filename is unknown to the leader, it replies with a “file not found” code
(you could pick any form of indication from the leader to the peer).

File transfer: The peer initiating the query establishes a connection with the IP address
(of the other peer) and port number it obtained in the query response and sets up a TCP
connection with the other peer and transfers the files and saves it in its local disk.

The second program is a simple server that responds to clients request for a file.

Follow all the guidelines provided in the document on grading policy for programming
assignments (described below). For this assignment, let each peer have three files that it
wishes to share. Print the consolidated list of files and their source IP addresses and ports
that are available at the leader after the peers send that information to the leader. Show
one unsuccessful and one successful query followed by one successful peer-to-peer file
transfer.

Your code must handle any exceptions due to failed calls.

Grading Policy for Programming Assignments
The program(s) you hand in should work correctly and must be well-documented. You
should submit your programming assignment electronically using the handin
command. No hard copies are required. Your submission should include the
following:
1. The entire code containing in-line documentation.
2. A separate document of a page or two (at most) describing the overall program

design, a verbal description of “how it works”, and design tradeoffs considered and
made.

3. A separate description of the tests you ran on your program to convince yourself that
it is indeed correct. Also describe any cases for which your program is known not to
work correctly.

4. A plain text readme.txt file describing how to run your program(s).
5. The executable files of your program(s).
6. A plain text file output.txt containing sample output as required by the assignment.

Grading

 program works correctly 80
 in-line documentation 5
 exception handling 5
 design document 5
 thoroughness of test cases 5

Total 100 points

Electronic Submission - Turning in files using handin in the CADE
All programming assignments must be submitted on CADE machines using the handin
command. To electronically submit files while logged in to a CADE machine, use:

% handin cs5480 assignment_name file_1 file_2 ...

where cs5480 is the name of the class account (same for both cs5480 and cs6480
students), and assignment_name (PA1, PA2, or PA3) is the name of the
appropriate subdirectory in the handin directory. Use PA1 for this assignment.

Some other very important points

• Every programming assignment of this course must be done individually by a student.

No teaming or pairing is allowed.
• You need to program in one of the following three languages: C, C++, or Java
• Your programs will be tested on CADE Lab Linux machines. You can develop

your program(s) on any OS platform or machine but it is your responsibility to
ensure that it runs on CADE Lab machines. You will not get any credit if the TA
is unable to run your program(s).

• You could assume that the peers know the IP address and port numbers of other peers
for establishing TCP connections. However, for file transfer this information is
obtained from the leader node.

• Please use TCP port numbers 6000 – 8000 for this programming assignment. These
ports can be used only inside the UofU network. These are not accessible from
outside of UofU.

• readme.txt – This file must contain compilation and running instructions detailing
how the TA should go about running your program on three machines (is there any
specific machine IP you have hard-coded, is there any specific order in which the
programs have to be started, etc).

• Submit ALL your files - This includes data files that you have used for testing the file
transfer.

