

CS5460: Operating Systems

Lecture: Virtualization

Anton Burtsev
March, 2013

Traditional operating system

Virtual machines

A bit of history
● Virtual machines were popular in 60s-70s

● Share resources of mainframe computers
[Goldberg 1974]

● Run multiple single-user operating systems

● Interest is lost by 80s-90s
● Development of multi-user OS
● Rapid drop in hardware cost

● Hardware support for virtualizaiton is lost

What is the
problem?

● Hardware is not
designed to be
multiplexed

● Loss of isolation

Virtual machine

Efficient duplicate
of a real machine
● Compatibility
● Performance
● Isolation

Trap and emulate

What needs to be emulated?

● CPU and memory
● Register state
● Memory state

● Memory management unit
● Page tables, segments

● Platform
● Interrupt controller, timer, buses

● BIOS
● Peripheral devices

● Disk, network interface, serial line

x86 is not virtualizable

● Some instructions (sensitive) read or update
the state of virtual machine and don't trap (non-
privileged)
● 17 sensitive, non-privileged instructions [Robin et al

2000]

x86 is not virtualizable (II)

● Examples
● popf doesn't update interrupt flag (IF)

– Impossible to detect when guest disables interrupts

● push %cs can read code segment selector (%cs)
and learn its CPL
– Guest gets confused

Solution space

● Parse the instruction stream and detect all sensitive
instructions dynamically
● Interpretation (BOCHS, JSLinux)
● Binary translation (VMWare, QEMU)

● Change the operating system
● Paravirtualization (Xen, L4, Denali, Hyper-V)

● Make all sensitive instructions privileged!
● Hardware supported virtualization (Xen, KVM, VMWare)

– Intel VT-x, AMD SVM

Basic blocks of a
virtual machine monitor:

QEMU example

Interpreted execution:
BOCHS, JSLinux

What does it mean to
run guest?

● Bochs internal
emulation loop

● Similar to non-
pipelined CPU like
8086

● How many cycles per
instruction?

Binary translation:
VMWare

VMWare Workstation

Address space during the world
switch

The world switch

● First, save the old processor state: general-purpose registers,
privileged registers, and segment registers;

● Then, restore the new address space by assigning %cr3. All
page table mappings immediately change, except the one of the
cross page.

● Restore the global segment descriptor table register (%gdtr).

● With the %gdtr now pointing to the new descriptor table, restore
%ds. From that point on, all data references to the cross page
must use a different virtual address to access the same data
structure. However, because %cs is unchanged, instruction
addresses remain the same.

● Restore the other segment registers, %idtr, and the general-
purpose registers.

● Finally, restore %cs and %eip through a longjump instruction.

Protecting the VMM

Translator continuations

Interpreted execution revisited:
Bochs

Instruction trace cache

● 50% of time in the main loop
● Fetch, decode, dispatch

● Trace cache (Bochs v2.3.6)
● Hardware idea (Pentium 4)
● Trace of up to 16 instructions

(32K entries)

● 20% speedup

Improve branch prediction

● 20 cycles
penalty on
Core 2 Duo

Improve branch prediction

● Split handlers to avoid conditional logic
● Decide the handler at decode time (15% speedup)

Resolve memory references
without misprediction

● Bochs v2.3.5 has 30 possible branch targets for
the effective address computation

● Effective Addr = (Base + Index*Scale + Displacement)
mod(2^AddrSize)

● e.g. Effective Addr = Base, Effective Addr = Displacement
● 100% chance of misprediction

● Two techniques to improve prediction:
● Reduce the number of targets: leave only 2 forms
● Replicate indirect branch point

● 40% speedup

Time to boot Windows

Cycle costs

References

● A Comparison of Software and Hardware Techniques for
x86 Virtualization. Keith Adams, Ole Agesen,
ASPLOS'06

● Bringing Virtualization to the x86 Architecture with the
Original VMware Workstation. Edouard Bugnion, Scott
Devine, Mendel Rosenblum, Jeremy Sugerman, Edward
Y. Wang, ACM TCS'12.

● Virtualization Without Direct Execution or Jitting:
Designing a Portable Virtual Machine Infrastructure.
Darek Mihocka, Stanislav Shwartsman.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

