
CS 5460: Operating Systems Lecture 3

CS5460: Operating Systems

Lecture 3: OS Organization
(Chapters 2-3)

CS 5460: Operating Systems Lecture 2

Last Time

  Generic computer architecture
–  Lots of pieces
–  OS has to manage all of them

  Processor modes
–  OS executes with the CPU in kernel mode
–  User programs execute with the CPU in user mode
–  Kernel mode code is trusted – if it is bad, the whole OS is bad

  Main OS Goal: Provide the “process model”
–  Dynamically created virtual address spaces + virtual CPUs
–  Processes are isolated by default
–  System call mechanism pokes a hole in the firewall

CS 5460: Operating Systems Lecture 2

Last Time Continued

  What are the 4 basic ways in which the processor
can start executing in kernel mode?

–  Boot
–  System call
–  Other trap
–  Interrupt

CS 5460: Operating Systems Lecture 3

foo:
 …
 movl r1, (arg1)
 movl r0, #foo
 syscall
 …

  User apps make system calls to
execute privileged instructions

  Anatomy of a system call:
–  Program puts syscall params in registers
–  Program executes a trap:

»  Minimal processor state (PC, PSW)
pushed on stack

»  CPU switches mode to KERNEL
»  CPU vectors to registered trap handler

in the OS kernel
–  Trap handler uses param to jump to desired

handler (e.g., fork, exec, open, …)
–  When complete, reverse operation

»  Place return code in register
»  Return from exception

Anatomy of a System Call

syscallhdlr(){
 …
 switch (reg0){
 …
 case: foo
 r0ßfoo(…);
 }
 asm(“rte”);
}

foo() {
 …
 return res;
}

User

Kernel

CS 5460: Operating Systems Lecture 2

Last Time Continued

  System call
–  Arguments passed in registers
–  Return code passed in register
–  Usually, there are side effects in kernel state or process’s

memory
–  Should operate correctly for all possible inputs

»  Why?
»  How would you test this?

–  Should be semantically simple

Today
  More traps
  Device I/O
  Interrupts
  Introduction to processes

–  What are they?
–  Where do they come from?
–  How do they relate to I/O?

  The process abstraction and how it is built is one of
the main topics of this class

–  Every user program runs inside a process
–  Every system call comes from some process
–  The kernel is not a process

CS 5460: Operating Systems Lecture 3

CS 5460: Operating Systems Lecture 3

Traps
  Architecture detects special events:

–  trap request – syscall, int
–  read or write invalid memory access
–  divide by zero
–  privileged instruction by user mode code
–  …

  When processor detects condition:
–  Save minimal CPU state (PC, sp, …) –

done by hardware
–  Switches to KERNEL mode
–  Transfers control to trap handler

»  Indexes trap table w/ trap number
»  Jumps to address in trap table (*)
»  Handler saves more state and may

disable interrupts
–  RTE/IRET instruction reverses operation

0x0082404

0x0084d08

0x008211c

0x0082000

…

Illegal address

Mem Violation

Illegal instruction

System call

TRAP VECTOR:

Here, 0x82404 is address of
handle_illegal_addr().

CS 5460: Operating Systems Lecture 3

Controlling I/O Devices
  Hardware is controlled using device registers

–  CPU can read/write device registers
–  Device drivers read/write registers to control device

»  Memory-mapped I/O: registers mapped to special addresses
»  Programmed I/O: special instructions to read/write registers

–  Registers may look like memory but they don’t act like it!

  DMA: Direct Memory Access
–  Modern I/O devices can directly read/write system memory
–  OS manages “DMA channels” to control memory device can access

  Device signaling: Polling vs Interrupts
–  Polling: OS “polls” devices to see if they need attention
–  Interrupts: Devices signal OS when they need attention

CS 5460: Operating Systems Lecture 3

Polling and Interrupts
  I/O is concurrent with main processor

–  CPU initiates I/O with I/O register writes
–  CPU detects I/O completion/signal via:

»  Interrupt (async hardware signal)
»  Polling (loop reading I/O register)

–  Question: Polling vs interrupts - when?

  Interrupt raises signal on CPU pin
–  Each device configured to use a particular

interrupt number
–  Usually, CPU “traps” to the appropriate

interrupt handler next cycle
–  Can selectively mask interrupts (not traps!)

  Interrupts can cost performance
–  Flush CPU pipeline + cache/TLB misses
–  Handlers often need to disable interrupt

0x008c408

0x0088044

0x008317c

0x0089f0c

…

Clock

Disk

Mouse

Keyboard

INTERUPT VECTOR:

CS 5460: Operating Systems Lecture 3

Issues with Interrupts
  Interrupt overload

–  Some devices can generate interrupts faster than CPU can handle
–  Example: “receiver livelock” in high speed networks
–  Solution: buffering, adapt between polling and interrupts

  Interrupts on PCs go through external interrupt
controller

–  Can be many sources of interrupts
–  Interrupt may be shared between devices

»  Question: How can this be done?!?
–  Embedded CPUs often have much nicer interrupt subsystems

than PCs do

CS 5460: Operating Systems Lecture 3

Issues with Interrupts
  What stack do interrupts use?

  What process is running when an interrupt arrives?

  Good manners for interrupt handlers:
–  When invoked, perform all work associated with device
–  Do not disable interrupts very long (e.g., up to 100usec)

  Interrupts can be very hard to get right
–  Concurrency is hard
–  Standard debugging techniques may not work

CS 5460: Operating Systems Lecture 3

Initializing Traps/Interrupts

  Vectors pinned at known physical addresses
–  Location specified by CPU vendor or configurable w/ register

  Initialized (carefully!) during boot process

// interrupts disabled on boot

…

intr_vector[0] = (void *) handle_clock_int;

intr_vector[1] = (void *) handle_disk_int;

…

enable_interrupts();

void handle_clock_int() { … };

CS 5460: Operating Systems Lecture 3

Traps vs Interrupts

  Traps are synchronous
–  Generated inside the processor due to instruction being

executed
–  Instructions may

»  Always trap – example?
»  Sometimes trap – example?
»  Never trap – example?

–  Cannot be masked
–  System calls are one kind of trap

  Interrupts are asynchronous
–  Generated outside the processor
–  Can be masked

CS 5460: Operating Systems Lecture 3

Quick Review
  System calls:

–  Arguments places in well-known registers
–  Perform trap instruction à vector to system call handler

»  Low level code carefully saves cpu state
»  Processor switches to protected/kernel mode
»  Syscall handler checks param and jumps to desired handler

–  Return from system call
»  Result placed in register and low level code restores state
»  Perform “rte” instruction: switches to user mode and returns

to location where “trap” was called

  OS manages trap/interrupt tables
–  Controls the “entry points” in the kernel à secure
–  Traps are synchronous; interrupts are asynchronous

CS 5460: Operating Systems Lecture 3

Intro to Processes
  How are OS and I/O protected from user processes?
  Spatial protection

–  Memory protection: OS and I/O registers mapped into protect
memory (supervisor-only)

–  Privileged instructions: User processes may not be allowed to
perform I/O ops

  Temporal protection
–  Timer interrupts keep user processes from hogging CPU

  Traps allow user processes to break through
protection barrier:

–  BUT OS controls entry points into kernel
–  Most system calls vectored to a single system call handler

»  Parameter to system call specifies what operation desired

CS 5460: Operating Systems Lecture 3

What’s a Process?
  Process: execution context of running program

  A process does not equal a program!
–  Process is an instance of a program
–  Many copies of same program can be running at same time

  OS manages a variety of activities
–  User programs
–  Batch jobs and scripts

  Each of these activities is encapsulated in a process

  Everything that happens is either in the OS or in a
process

–  Again, the OS is not a process

–  System programs (e.g., print spool,
file server, network daemons, …)

CS 5460: Operating Systems Lecture 3

Process Management
  OS manages processes:

–  OS creates, deletes, suspends, and resumes processes
–  OS schedules processes to manage CPU allocation (“scheduling”)
–  OS manages inter-process communication and synchronization
–  OS allocates resources to processes (and takes them away)

  Processes use OS functionality to cooperate
–  Signals, sockets, pipes, files to communicate
–  Synchronization for resources modified by multiple processes

CS 5460: Operating Systems Lecture 3

What’s in a Process?
  Process state consists of:

–  Memory state: code, data, heap, stack
–  Processor state: PC, registers, etc.
–  Kernel state:

»  Process state: ready, running, etc.
»  Resources: open files/sockets, etc.
»  Scheduling: priority, cpu time, etc.

  Address space consists of:
–  Code
–  Static data (data and BSS)
–  Dynamic data (heap and stack)
–  See: Unix “size” command

  Special pointers:
–  PC: current instruction being executed
–  HP: top of heap (explicitly moved)
–  SP: bottom of stack (implicitly moved)

Code
(Text segment)

Static data
(Data segment)

Uninitialized data
(BSS segment)

0x00000000

0xFFFFFFFF

Heap
(Dynamically allocated)

Stack

SP

HP

PC

CS 5460: Operating Systems Lecture 3

Practical Process Management
  On a Unix machine, try:

–  ps –Af : lots of info on all running processes
–  kill –9 547 : immediately terminates process with PID 547
–  top : displays dynamic info on top running jobs
–  Write a program that calls:

»  getpid(): returns current process’s PID
»  fork(): create a new process
»  exec(): load a new program into the current process
»  sleep(): puts current process to sleep for specified time

  Similar commands work on Mac OS X (BSD Unix!)
  On Windows à Task manager (CTL-ALT-DEL)

CS 5460: Operating Systems Lecture 3

Processes and Interrupt-Driven IO

1.  Cursor control process blocked on
mouse device (e.g., /dev/cua0)

2.  User moves mouse

3.  Mouse hardware generates interrupt

4.  If interrupts on, CPU saves state and
jumps to handle_mouse_int()

5.   handle_mouse_int() pushes some
registers on stack, reads position
delta from mouse controller

6.   handle_mouse_int() checks to see
if a process is waiting on device

7.   handle_mouse_int() asks OS to
wake up cursor-control process and
returns

8.  CPU scheduler evaluates priority of
runnable processes:
Ø  Is cursor control process higher?

Ø  If so, switch to cursor control proc

9.  Cursor control process computes
new mouse position, sends cmd to
video driver to update screen

10.  Video driver updates screen

11.  Cursor control process goes to sleep
(assuming no new movement)

What you see is:

What the OS sees is:

Important From Today
  Trap (synchronous)
  Interrupt (asynchronous)
  Interaction with devices through

–  Device registers
–  Interrupts
–  DMA

  Processes
–  This is a big part operating system’s job
–  This is a big part of this class
–  Every system call comes from some process

  Boot sequence
  Flow of control when a process does I/O

CS 5460: Operating Systems Lecture 3

