Parallelism and Performance

Ideal parallel world:

- Sequential runs in T_s
- P processors run in $T_p = \frac{T_s}{P}$

Today: Why that usually doesn’t happen
Measuring Performance

- Obstacle: Non-Parallelism
- Obstacle: Overhead
Measuring Performance

Latency: time to complete a task

This is normally what we want to reduce through parallelism
Measuring Performance

Speedup: ratio of latencies $= \frac{T_s}{T_p}$

- **Linear speedup**: speedup approximates P
- **Sublinear speedup**: speedup less than P
- **Superlinear speedup**: speedup more than P!

Superlinear speedup happens when the algorithm or machine changes
Superlinear Speedup

Machine change:

Sequential

Parallel
Superlinear Speedup

Algorithm change:

Sequential

Parallel
Measuring Performance

Throughput: \(\frac{work}{T_p} \)

Higher throughput doesn’t imply lower latency
Measuring Performance

Efficiency: effective use of processors $= \frac{Speedup}{P}$
Measuring Performance

FLOPS: floating-point operations per second

IOPS: integer operations per second
Measuring Performance

Performance measurement don'ts:

- use different machines
- disable compiler optimizations
- equate “sequential” with a single parallel process
- ignore cold start
- ignore devices

Do measure multiple P and multiple problem sizes
Measuring Performance

Obstacle: Non-Parallelism

Obstacle: Overhead
Inherent Non-Parallelism

Amdahl's Law

\[\frac{1}{S} \text{ of program is inherently sequential } \Rightarrow \]

\[Speedup < S \]

- 50% sequential \(\Rightarrow \) maximum speedup of 2
- 90% sequential \(\Rightarrow \) maximum speedup of 1.1
- 10% sequential \(\Rightarrow \) maximum speedup of 10

and yet lots of processors help for some computations, because it’s easy and useful to scale the problem size
Dependencies

Flow Dependence: write followed by read

```plaintext
sum = a+1; /* << */
first_term = sum*scale1; /* << */
sum = sum+b;
second_term = sum*scale2;
```

This is a *true dependence*
Dependencies

Anti Dependence: read followed by write

```
sum = a+1;
first_term = sum*scale1; /* << */
sum=b+1; /* << */
second_term=sum*scale2;
```

This is a *false dependence*

Rewrite:

```
sum = a+1;
first_term = sum*scale1;
sum2 = b+1;
second_term = sum2*scale2;
```
Dependencies

Output Dependence: write followed by write

\[
\begin{align*}
\text{sum} &= \text{a} + 1; \quad /* << */ \\
\text{first_term} &= \text{sum} \times \text{scale1}; \\
\text{sum} &= \text{b} + 1; \quad /* << */ \\
\text{second_term} &= \text{sum} \times \text{scale2};
\end{align*}
\]

This is a *false dependence*

Rewrite:

\[
\begin{align*}
\text{sum} &= \text{a} + 1; \\
\text{first_term} &= \text{sum} \times \text{scale1}; \\
\text{sum2} &= \text{b} + 1; \quad /* << */ \\
\text{second_term} &= \text{sum2} \times \text{scale2};
\end{align*}
\]
Avoiding Dependencies

Sometimes, you can change the algorithm
Lack of Dependencies

A task that spends all its time on many mutually independent computations is *embarrassingly parallel*.
Other Non-Parallelism

Other kinds of non-parallelism:

- Memory-bound computation
- I/O-bound computation
- Load imbalance
Measuring Performance

Obstacle: Non-Parallelism

Obstacle: Overhead
Overhead
Sources of overhead:

- Communication and synchronization
- Contention
- Extra computation
- Extra memory
Overhead

Reducing communication and contention overhead:

- Larger **granularity**, so that per-message overhead is less costly
 - Example: pass whole array section instead of individual elements

- Improve **locality**, so that less communication is needed
 - Example: compute sums where data already resides

- Recompute instead of communicating
 - Example: recompute pseudo-random sequences instead of centralizing
Overhead

Trade-offs:

• Communication versus computation
• Memory versus parallelism
• Overhead versus parallelism