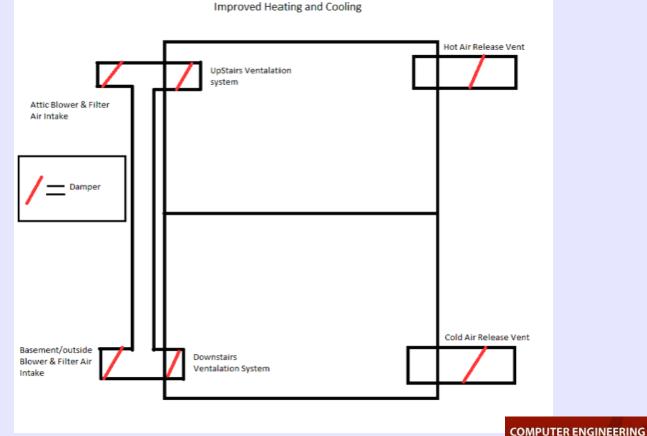
Smart Home

Todd Rogers Christopher Johnson Levi Balling Dario Bosjnak

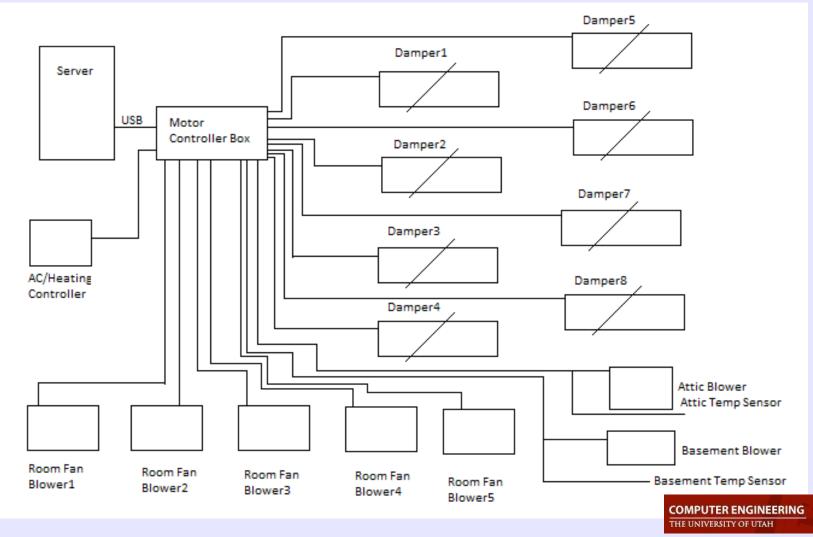
COMPUTER ENGINEERING THE UNIVERSITY OF UTAH

Overview


Temperature Control Outlet Control Occupancy Detection Wi-Fi and networking Server

Review

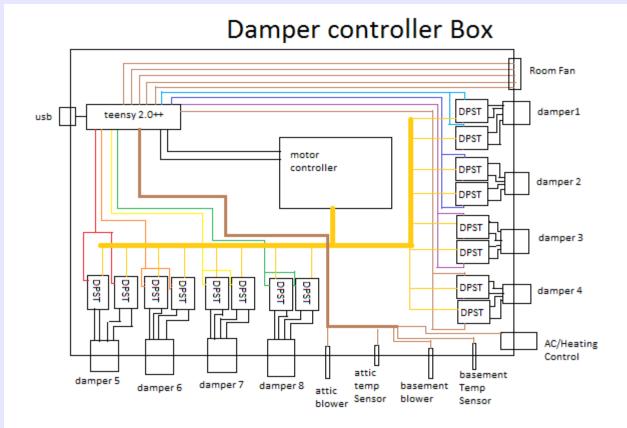
•Control individual Room Temperature.


•Take advantage of outside weather conditions.

•control a set of dampers so that the system will optimize house temperature comfort levels.

THE UNIVERSITY OF UTAH

The Server will communicate over USB line to the Motor controller box. The motor controller box will in turn communicate with all the other devices in the house.

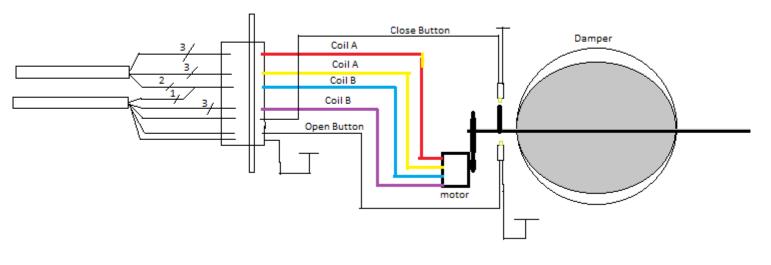


Interfaces

The Motor Controller Box

- •Bi-polar 4 wire motor controller
- •Relay controlled bus
- •Signals will be controlled with USB serial interface to teensy 2.0++ to

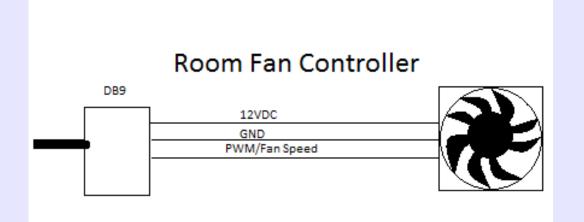
the server


COMPUTER ENGINEERING THE UNIVERSITY OF UTAH

Interfaces

Damper

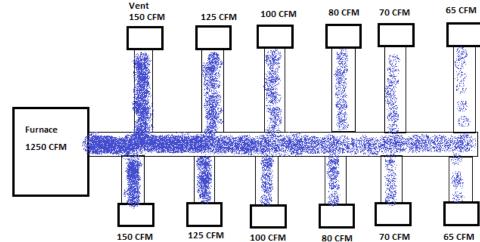
- •DB9 connector
- •4 coil wires, with 3 cat5 wires connected to each coil pin (Imax
- =1.731 amps)
 - •Fuse rate for copper 24 AWG wire is 7 amps
- •1 pin for 12V or 5V
- •2 pins for damper open/close



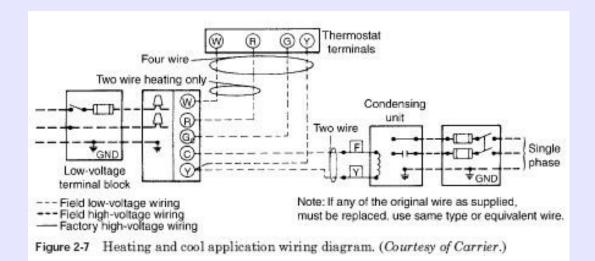
COMPUTER ENGINEERING THE UNIVERSITY OF UTAH

Interfaces

Room Fan Controller


- •1 Delta AFC1212DE Fan
- •100Hz PWM signal

Interfaces


Air Distribution

Main Furnance blower ~1250 CFM(Cubic Feet/Min)
Small room blowers 148 CFM
11 Vents = ~150 - ~85
Air Flow Factors: Duct Size, Air Pressure, Humidity, and Air Temperature

Interfaces

- •A/C and Heating controller
- •Relays to turn on and off
- •Transistor to determine if already in use

Risks

Schedule and Risk Scale 1-10(10 being Huge risk)

Motor controller from example (http://home.cogeco.ca/~rpaisley4/Bipolar.html)

- •Alternative: purchase one for \$20
- •Time: 2 weeks
- •Risk: 7
- Motor controller Box
 - •Time: 3 weeks
 - •Risk: 7

Motor Controller Code (open, close, getTemperature,...)

- •Time: 2 weeks
- •Risk: 3
- Fan Controller Code
 - •Time: 1 day
 - •Risk: 2

Cables

- •Time: 1.5 weeks
- •Risk: 2

Risk/Schedule

Schedule of completion

Time Risk	Task
week 1-2 7	Develope Motor Controller
week 3-6 7	Motor Controller Box
week 7-8 2	Motor Controller Code
week 9 1	Fan Controller Code
week 9 1	Temperature Sensor Code
week 9-10 2	Cables
week 11-12 4	Demo Setup
week 13-15 7	Debug

Bill of Materials

Qty|Part

Motor Controller parts

- 1| 555timer (timer chip) 1 MC74HC194N (4 bit Shift Reg) 1|SN754410NE(Quad Half-H Bridge) 1|LM7805(Voltage Regulator) 6|2N3904 or 2N4400 1|LED 1|1N4148 1|1N4001 5|3.3Kohm 2|470ohm 7|10Kohm 1|1uF 2|4.7uF 1|470uF Damper 8|bipolar motor 16 buttons
- 8| DB9 female
- ~10'x10'| tin sheets

Motor Controller Box

- 15 DB9 female
- 16|5VDC Relay
- 16|2N3904
- 1 |teensy2.0++
- 2 | 100 mill sockets
- 16 resistors
- 2 | temperature connectors
- 1 | 24V 4.2amp Power supply
- 1 | Heat Sink
- 1 | CPU fan

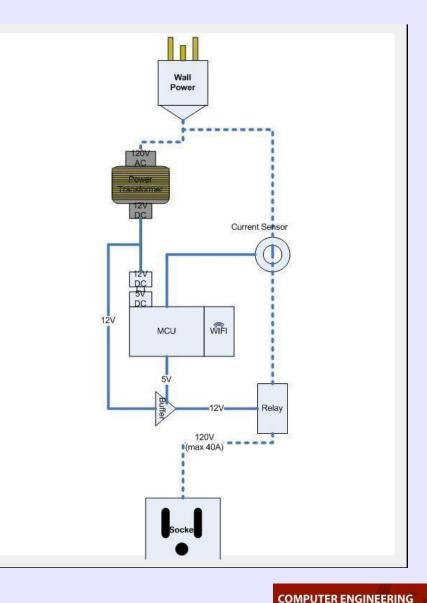
Room Fan Controller

- 5 |fans
- 5 |DB9 female

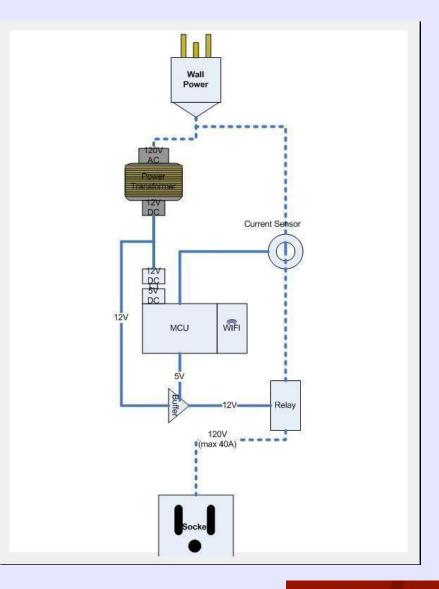
Basement/Attic Blower Controller

- 2 |DB9 female
- 2 |A/C 120V Socket
- 2 |A/C 120V Plug
- 2 |DSPT Relay

A/C Heating Controller


Outlet Control Review

- •Switch power from wall on/off to 5 individual sockets.
- •Monitor power consumption.
- •Mobility of a power strip.
- •MCU Controlled via commands from server over WIFI.

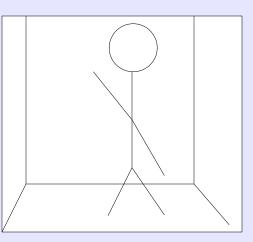


- Relays used to switch on 120V 60Hz power.
 - Automotive relay used for its high contact current, low cost.
- Onboard power supply will drive the circuitry and the microcontroller/WIFI
 - ~ 3 amps

THE UNIVERSITY OF UTAH

- Current Sensors will monitor power at each socket, values read into ADCs.
- Power consumption values available on web interface and LEDs near socket.

Schedule of completion


Time	Risk	Task
week 1	2	Component wiring/testing
week 2-4	6	Arduino wiring, ADC tuning, Current sensors
week 5-6	3	Power controls/programming
week 7-9	5	WIFI shield interfacing
week 9-11	5	Server communication
week 12-1	3 7	Power strip casing, making things fit
week 14-1	5 1	Demo Setup

Bill of Materials Qty|Part 5 Relays - CB1AHF-12VRELAY AUTOMOTIVE SPST 70A 12V, Panasonic 5 Current Sensors - ACS709LLFTR-35BB-TSENSOR CURRENT 75A 5V BI 24QSOP, Allegro Microsystems Inc 5 Transistors - 2N3904TFTRANSISTOR NPN 40V 200MA TO-92-Fairchild Semiconductor 1 Power Supply -VOF-25-12PWR SUPPLY 24W OPEN 12V 2.0AV-Infinity VOF-25CUI Inc 2 Voltage Regulators - LM78L05ACZXAIC REGULATOR 5V 0.1A 5% TO-92-Fairchild Semiconductor 1 Arduino Demilanove Board 1 Wifi Shield 1 Power supply

Why is room-based occupancy detection important?

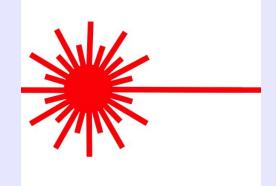
Leads to

- convenience
- energy conservation and cost savings
- improved security

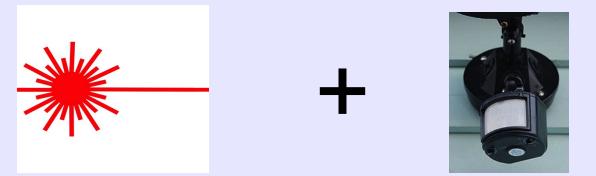
Much of occupancy detection performed using

PIR motion sensors with timers.

Suspected reasons:


- cheap
- well-established technology
- savings are better than no occupancy detection

Principal characteristic of motion detectors:

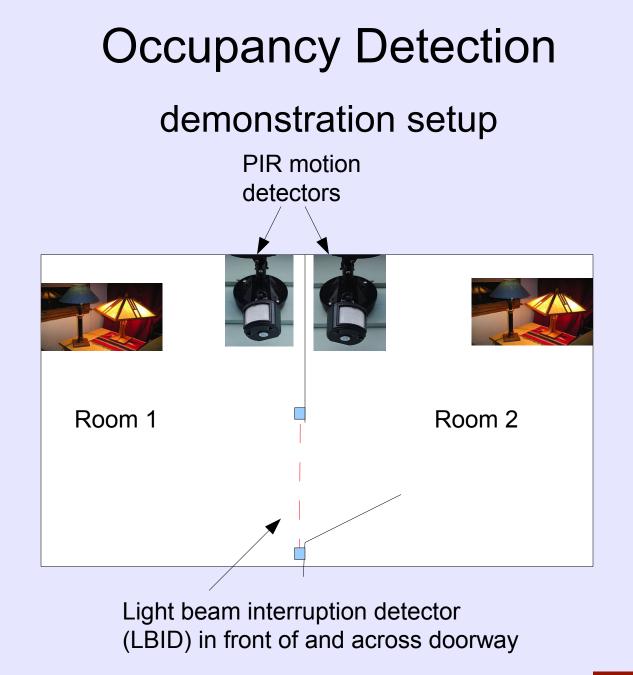

 perpetual, periodic motion required to preserve occupied state

Leads to compromises adjusting the timer.

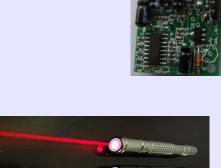
Enter light beam interruption detectors!

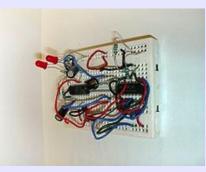
- use a laser or other light source to shine a beam of light
- detect when persons pass through a doorway, breaking beam

Light beam interruption detectors, when added to motion sensors and timers:


- free motion sensors from perpetual motion requirement
- allow motion sensors to detect vacancy in as little as 5-10 seconds
- increase both efficiency and reliability

Combining occupancy detection with lighting


- lights turned on in both rooms adjoining a room boundary after beam broken
- lights turn on when the room is deemed occupied
- lights go out when the room is deemed vacant
- switches on touch screen panels allow forcing of lights to on or off to override occupancy


GINEERING

Materials

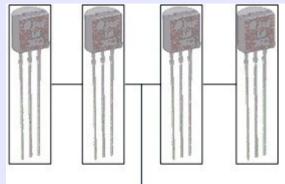
- light beam interruption detector
 - laser pointer
 - CdS light-sensitive resistor
- DYP-ME003DD-H low voltage PIR motion detector
- miscellaneous other circuitry to connect sensors to Arduino

Schedule of Completion

<u>Time</u>	<u>Risk Task</u>	
week 1	1	verify motion sensor shipped right, test LBID
week 2	3	test motion sensor, design circuit to connect it to control board
week 3	2	test motion sensor digital output, design
week 3	2	assemble circuitry to connect LBID to control board
week 4	2	test digital output for LBID with laser

Review

- Arduino MCU with Wi-Fi shield collect data from sensors and send to server
- Bi-Directional communication
- Control power outlets, lights.
- Store information on Apache server
- Accessible from anywhere where there is internet connection
- WEP secured
- Web based presentation of data


WiShield 2.0

- WiShield 2.0 from async_labs
- 802.11b Wi-Fi certified
 - 1Mbps and 2Mbps throughput speeds
- Supports both infrastructure (BSS) and ad hoc (IBSS) wireless networks
- Ability to create secured and unsecured networks
 - WEP (64-bit and 128-bit)
 - WPA/WPA2 (TKIP and AES) PSK
- Low power usage
 - Sleep mode: 250µA
 - Transmit: 230mA
 - Receive: 85mA

Interfaces

- Temperature Sensors will be connected to Arduino MCU
- Room occupancy sensor connected to Arduino MCU
- Send data over Wi-Fi 802.11b to the server
- Each Wi-Fi shield will have an unique IP address
- Apache server will be in charge of collecting data and presenting to user
- Each peripheral unit such as power strip, light control will have its own Arduino MCU and an Wi-Fi shield (WiFi Shield WiShield V2.0)
- Commands will be sent through HTTP from server to Arduino MCU

Interfaces

- Static IP Address
- Room 1 IP(192.168.1.100) Arduino MCU
- Data from room 1 sent to server over 192.168.1.100 IP
- Commands sent over HTTP (http://192.168.1.167/? 2345) turn pins 2345 on
 - Lights connected to those pins will turn.
- Depending on command received through http arduino will run a specific block of code to execute command
- WEP encrypted communication between Arduino and server
- Communication available from any internet based location

- Add Ethernet.h arduino library for communication with wifi
- PHP codding available for grabbing the information from sensors
- Data collected from arduino can be stored in database for future planing

sketch_apr06	35
//ARDUINO 1.0 //ARDUINO 1.0	
#include < <mark>Eth</mark>	ernet.h>
#include < <mark>SPI</mark>	.h>
boolean readi	ng = false;
//////////////////////////////////////	
	<pre>////////////////////////////////////</pre>
byte gatewa	<pre>y[] = { 192, 168, 1, 1 };</pre>
byte subnet	[] = { 255, 255, 255, 0 };
byte mac[]	= { OxDE, OxAD, OxBE, OxEF, OxFE, OxED };
EthernetSer	ver server = EthernetServer(80); //port 80
1111111111111	

Schedule of completion

Tim	Risk Task	
week 1	2 Communicate with the sensors	
	WIFI shields interfacing assign specific IP addresses	
week 4-6	Wi-Fi shields communicate with Server	
	Server communication - store gathered data from sensors	
week 10-11	5 Send commands back to the Arduino MCU	
week 12-13	' Testing	
week 14-15	L Demo Setup	

Interfaces

Bill of Materials

Qty|Part

1 Netgear Wi-Fi router

1 Computer running Apache server

3 Arduino Demilanove Board

3 Wifi Shield (WiShield 2.0)

3 Power supply's

Server Interface

- •Secure website control panel
- •Apache Server
- •Communicates to different IP address on the network
- •Communicates to Motor Controller Box via Com port

Server

Schedule of completion

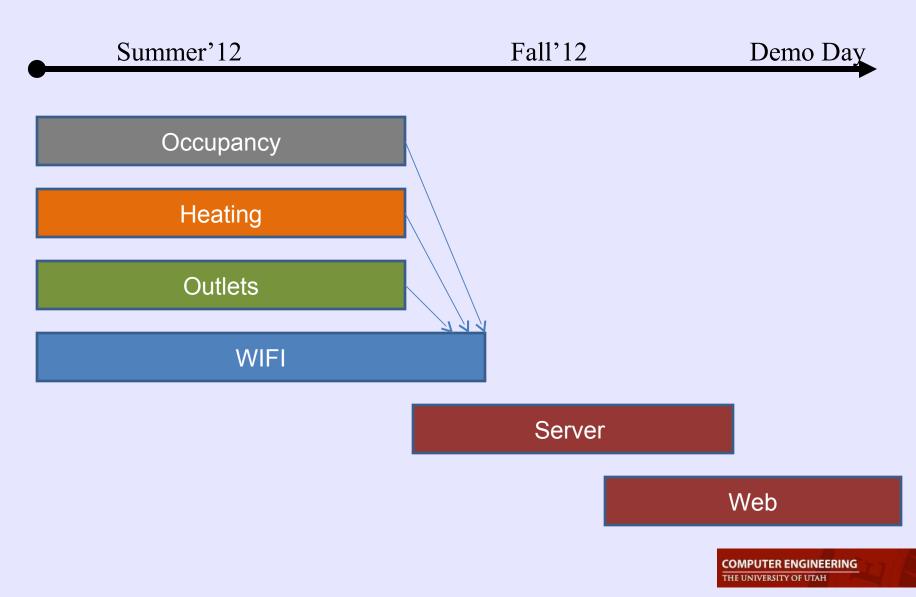
Tir	ne Risk Task
week 5	2 Setup web server(apache)
week 7	5 Setup security
week 8	4 Communicate to COM port (pyserial)
week 9-12	9 Communicate to IP addressed wifi devices
week 12-14	- 7 Debug
week 15	5 Demo Setup

Server

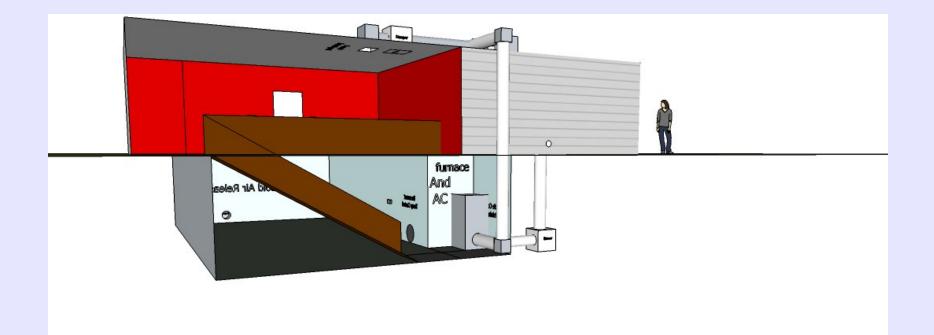
Bill of Materials

- Qty | Part Room Monitoring system 2 | garage door safety sensors 2 | PIR Motion Sensors WIFI WiFi Shield WiShield V2.0
- 1 | PC (Dell Precision 380)

Web Interface


- Users will control house systems via web interface.
- Controls for outlets, heating, and occupancy.
- Statistics, routines, and timers.
- Simple and useful.

Outlet Heating		pancy	
Lamp	On		
Fan	Off		
Light	Off		
Computer	Off		
TV	Off		


Tasking

Christopher Johnson: Dario Bosnjak: Levi Balling: Todd Rogers: All: All: Occupancy WIFI Heating Outlets Wifi to Server interfacing Web interface

Time Line

Questions?

