Gateway to Amateur Satellites for Internet Users

By Bo, Junsang, Suresh, Vinh

http://www.livemotion.us
Gateway to Amateur Satellites for Internet Users

HISTORY: Beginning

First milestone
- The first satellite was Sputnik I by Soviets. The first successful United States launch took place four months after launching Sputnik I.

Second milestone
- SCORE: often referred to as first comsat. However, it carried only a taped message for playback. It could not be used for relaying signals.

Now over 2500 satellites on the sky…
HISTORY: Beginning Amateur Satellites

OSCAR 5

- It is called AO-5 (Australia's - OSCAR 5).
 - Built by several students at the University of Melbourne, most undergraduate engineering major for 3 years. However, it was not launched.

AMSAT (the Radio Amateur Satellite Corporation)

- AMSAT was formed in order to support AO-5.
 - Finally, AO-5 was launched on March 3rd, 1969.
Gateway to Amateur Satellites for Internet Users

SAT SPEC: Operation modes

Analog Communication Mode (CW & SSB)
- Linear mode – receives a slice of one amateur band and shifts the entire slice to a different band.
- Real time communication (use voice)

Digital Communication Mode (FSK & PSK)
- Non linear mode – these vary in speed and in the modulation techniques employed.
- Not real time – store & forward communication (use software)

Special Modes (Repeater, Broadcast, ROBOT etc...)
Gateway to Amateur Satellites for Internet Users

SAT SPEC: Orbits

HISTORY

SATELLITE SPECS

Low Earth Orbit (LEO)
- Could be accessed with low power and simple antennas.
- They generally used lower frequencies for which transmitting and receiving equipment is widely available.
- Limited communication time (usually less than 20 minutes per day)

High Earth Orbit (HEO)
- Need high power, beam antennas and very sensitive receivers.
- Biggest obstacle communicating with these satellites is the high frequency being used (antenna precision)
- Longer communication time

ANTENNA SYSTEM
PRE AMPLIFICATION
ROTATOR CONTROLLER
MODEM/TNC
SOFTWARE
POWER SYSTEM
BACKUP PLAN
TIMELINE
OBSTICLES
QUESTION
Gateway to Amateur Satellites for Internet Users

SAT SPECS: Target Satellites

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Digital Communication Mode (FSK & PSK)

- 1200 bps & 9600 bps
- software base

Low Earth Orbit (LEO)

- UO-22
- KO-23
- KO-25

REASONS:

- Make the system easier to implement
- Limited funding
- Can avoid undesired signal distortions due to Doppler Effect, Faraday Rotation Effect and Spin Modulation effect.
ANTENNA SYSTEM: Characteristics

1. Directional Properties (gain and pattern)
2. Transmission vs Reception properties
3. Efficiency
4. Polarization
5. Link effect (spin modulation, Faraday rotation)
Gateway to Amateur Satellites for Internet Users

ANTENNA SYSTEM: Direction properties

Idle antenna
- An array that radiates power equally in all directions

Expected antenna: Yagi
- A beam acts by concentrating its radiated energy in a specific direction.

Yagi has better gain than dipole.

Yagi = 2 * dipole
ANTENNA SYSTEM: RX & TX properties

Basic Law: reciprocity principle
- The gain pattern of an antenna is same for reception as for transmission.

Real World: signal & noise (S/N) ratio
- Though high efficiency and gain contribute to our goal, the shape of the gain pattern and the location of null may have a significant impact on S/N ratio by reducing noise and interfering signals.

Thumb of Rule
- A good antenna for transmitting to satellite is not necessary a desirable antenna for receiving signals from a satellite.
ANTENNA SYSTEM: Efficiency

- A transmitting antenna that is 100% efficient radiates all the power reaching its input terminals.

- A transmitting antenna that is 50% efficient only radiates half the power appearing at its input terminals.

- **Note**: If efficiency is lower than 80%, antenna needs to be disconnected to avoid damage to Radio.
Radio waves consist of electric and magnetic fields, both of which are always present and inseparable. When a radio wave passes a point in space, the electric field at that point varies cyclically at the frequency of the wave. When we discuss the ‘polarization of a radio wave’ we’re focusing on how the electric field varies.

Most amateur antennas are designed to respond primarily to the electric field.
Obstacles

- Building an antenna that can match all these characteristics is a difficult task.

Fortunately, we are able to make use of already developed software for antenna design.

Software will generate exact measurements for each element of the antenna.
Gateway to Amateur Satellites for Internet Users

ANTENNA SYSTEM: Specification for ours

History

Satellite specs

Antenna system

Pre amplification

Rotator controller

Modem/TNC

Software

Power system

Backup plan

Timeline

Obstacles

Question

The length of two Antennas
- 70 cm & 2 meters

Height
- 2 meters

Power
- 12 V & Max 10A

Cost (without rotator)
- $60
Gateway to Amateur Satellites for Internet Users

PRE AMPLIFICATION

- Amplifier signal from satellite
- One Pre-Amplifier circuit needed
- Components
 - (8) Capacitors
 - (3) Inductors
 - (1) Diode
 - (2) RCA Jack
 - (1) MES FET
 - (4) Resistors

Estimated cost $20
ROTATOR CONTROLLER

- M68HC11 Motorola Microcontroller
- Max232 chip for serial communication
- Breadboard, wires, capacitors, resistors etc
- D/A converter, connectors

Estimated cost $25
Gateway to Amateur Satellites for Internet Users

MODEM/TNC

- 9600 baud rate modem
- Modem/TNC circuit on single board
- Components
 - (5) TL064 IC
 - (2) CD4538
 - (2) CD4013
 - (2) LEDs
 - (2) Zeners
 - Breadboard, resistors and capacitors

Estimated cost $27
Gateway to Amateur Satellites for Internet Users

CODES

- Assembly codes for M68HC11
- Assembly codes for TNC/Modem
- User GUI using .NET platform
- Internet services in Java or .NET
- Tracking software in .NET platform
POWER SYSTEM

• Need a lot of power to transmit signal
• Borrow power equipment from EE lab if there is no power source available outside the building.
• Most of the time we will use wall outlets and a step down transformer to power equipment.
Gateway to Amateur Satellites for Internet Users

BACKUP PLAN

- Big problem in sending signal
- Communicate with analog satellites
- Test send and receive unit on ground
Gateway to Amateur Satellites for Internet Users

TIMELINE: Summer 2004

<table>
<thead>
<tr>
<th>Month</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1</td>
<td>W2</td>
<td>W3</td>
<td>W4</td>
</tr>
<tr>
<td>Vinh</td>
<td>Research</td>
<td>Design and Implementation</td>
<td>Testing, Optimization and Integration</td>
<td>Project Integration and Testing in Live Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junsang</td>
<td>Research</td>
<td>Design & Implementation</td>
<td>Testing</td>
<td>Testing with Modem, Pre-Amp and rotator controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suresh</td>
<td>Research / Design</td>
<td>Circuit Simulation. Gather parts</td>
<td>Build circuit</td>
<td>Program Microcontroller</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bo</td>
<td>Research and gather parts</td>
<td>Design and Implementation</td>
<td>Testing</td>
<td>Project Integration and Testing in Live Environment</td>
</tr>
</tbody>
</table>

TIMELINE: Summer 2004
Gateway to Amateur Satellites for Internet Users

TIMELINE: Fall 2004

<table>
<thead>
<tr>
<th>Month</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1 W2 W3 W4</td>
<td>W1 W2 W3 W4</td>
<td>W1 W2 W3 W4</td>
<td>W1 W2 W3 W4</td>
</tr>
<tr>
<td>Vinh</td>
<td>GUI Interface Design and development</td>
<td>Testing and Debugging</td>
<td>Final Testing of Overall Project</td>
<td>Documentations and Project Submission</td>
</tr>
<tr>
<td></td>
<td>Research and Development for tracking modules</td>
<td>Integrating with Hardware</td>
<td>Final Testing of Overall Project</td>
<td>Documentations and Project Submission</td>
</tr>
<tr>
<td>Junsang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suresh</td>
<td>Develop 2-D mapping for the tracking and bearing calculations</td>
<td>Integrate with J-track data</td>
<td>Integrate with tracking and Network modules</td>
<td>Final Testing of Overall Project</td>
</tr>
<tr>
<td>Bo</td>
<td>Develop Networking module</td>
<td>Testing and Debugging</td>
<td>Final Testing of Overall Project</td>
<td>Documentations and Project Submission</td>
</tr>
</tbody>
</table>
OBSTICLLES

• Cost for components (rotator)
• Satellite footprint
• Available operational satellites
• Weather conditions in final testing stage (winter 2004)
• Lack of experience in satellite communication
QUESTIONS

HISTORY
SATELLITE SPECS
ANTENNA SYSTEM
PRE AMPLIFICATION
ROTATOR CONTROLLER
MODEM/TNC
SOFTWARE
POWER SYSTEM
BACKUP PLAN
TIMELINE
OBSTICLES
QUESTION

Questions…