By Bo, Junsang, Suresh, Vinh

HISTORY: Beginning

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

First milestone

- The first satellite was Sputnik I by Soviets. The first successful United States launch took place four months after launching Sputnik I.

Second milestone

- SCORE: often referred to as first comsat. However, it carried only a taped message for playback. It could not be used for relaying signals.

Now over 2500 satellites on the sky...

HISTORY: Beginning Amateur Satellites

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

OSCAR 5

 It is called AO-5(Australia's - OSCAR 5)
Built by several students at the University of Melbourne, most undergraduate engineering major for 3 years. However, it was not launched.

AMSAT(the Radio Amateur Satellite Corporation)

. AMSAT was formed in order to support AO-5,. Finally, AO-5 was launched on March 3rd, 1969.

SAT SPEC: Operation modes

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Analog Communication Mode(CW & SSB)

- Linear mode receives a slice of one amateur band and shifts the entire slice to a different band.
- Real time communication (use voice)

Digital Communication Mode(FSK & PSK)

- Non linear mode these vary in speed and in the modulation techniques employed.
- Not real time store & forward communication (use software)

Special Modes (Repeater, Broadcast, ROBOT etc...)

SAT SPEC: Orbits

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Low Earth Orbit(LEO)

- Could be accessed with low power and simple antennas.
- They generally used lower frequencies for which transmitting and receiving equipment is widely available.
- Limited communication time(usually less than 20 minutes per day)

High Earth Orbit(HEO)

- Need high power, beam antennas and very sensitive receivers.
- Biggest obstacle communicating with these satellites is the high frequency being used (antenna precision)
- Longer communication time

SAT SPECS: Target Satellites

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Digital Communication Mode(FSK & PSK)

- 1200 bps & 9600 bps
- software base

Low Earth Orbit(LEO)

- UO-22
- KO-23
- KO-25

REASONS:

- Make the system easier to implement
- Limited funding
- Can avoid undesired signal distortions due to Doppler Effect, Faraday Rotation Effect and Spin Modulation effect.

ANTENNA SYSTEM: Characteristics

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

- 1. Directional Properties (gain and pattern)
- 2. Transmission vs Reception properties
- 3. Efficiency
- 4. Polarization
- 5. Link effect (spin modulation, Faraday rotation)

ANTENNA SYSTEM: Direction properties

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Idle antenna

- An array that radiates power equally in all directions

Expected antenna: Yagi

- A beam acts by concentrating its radiated energy in a specific direction.

Yagi has better gain than dipole.

Yagi = 2 * dipole

ANTENNA SYSTEM: RX & TX properties

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Basic Law: reciprocity principle

- The gain pattern of an antenna is same for reception as for transmission.

Real World: signal & noise (S/N) ratio

- Though high efficiency and gain contribute to our goal, the shape of the gain pattern and the location of null may have a significant impact on S/N ratio by reducing noise and interfering signals.

Thumb of Rule

 A good antenna for transmitting to satellite is not necessary a desirable antenna for receiving signals from a satellite.

ANTENNA SYSTEM: Efficiency

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

- A transmitting antenna that is 100% efficient radiates all the power reaching its input terminals.
- A transmitting antenna that is 50% efficient only radiates half the power appearing at its input terminals.
- Note: If efficiency is lower than 80%, antenna needs to be disconnected to avoid damage to Radio.

ANTENNA SYSTEM: Polarization

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Radio waves consist of electric and magnetic fields, both of which are always present and inseparable. When a radio wave passes a point in space, the electric field at that point varies cyclically at the frequency of the wave. When we discuss the 'polarization of a radio wave' we're focusing on how the electric field varies.

Most amateur antennas are designed to respond primarily to the electric field.

ANTENNA SYSTEM: How to build

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Obstacles

-Building an antenna that can match all these characteristics is a difficult task.

Fortunately, we are able to make use of already developed software for antenna design

Software will generate exact measurements for each element of the antenna

ANTENNA SYSTEM: Specification for ours

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

The length of two Antennas

- 70 cm & 2 meters

Height

- 2 meters

Power

- 12 V & Max 10A

Cost (without rotator)

- \$60

PRE AMPLIFICATION

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

- Amplifier signal from satellite
- One Pre-Amplifier circuit needed
- Components
 - (8) Capacitors
 - (3) Inductors
 - (1) Diode
 - (2) RCA Jack
 - (1) MES FET
 - (4) Resistors

Estimated cost \$20

ROTATOR CONTROLLER

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

- M68HC11 Motorola Microcontroller
- Max232 chip for serial communication
- Breadboard, wires, capacitors, resistors etc

Estimated cost \$25

MODEM/TNC

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

- 9600 baud rate modem
- Modem/TNC circuit on single board
- Components
 - (5) TL064 IC
 - (2) CD4538
 - (2) CD4013
 - (2) LEDs
 - (2) Zeners
 - Breadboard, resistors and capacitors

Estimated cost \$27

CODES

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

- Assembly codes for M68HC11
- Assembly codes for TNC/Modem
- User GUI using .NET platform
- Internet services in Java or .NET
- Tracking software in .NET platform

POWER SYSTEM

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

- Need a lot of power to transmit signal
- Borrow power equipment from EE lab if there is no power source available outside the building.
- Most of the time we will use wall outlets and a step down transformer to power equipment.

BACKUP PLAN

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

- Big problem in sending signal
- Communicate with analog satellites
- Test send and receive unit on ground

TIMELINE: Summer 2004

Month	May				June				July				August				
	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	
Vinh			Rese	earch	Desig	gn and Implementation			Tes	sting, Opti Integr		n and	Project Integration and Testing in Live Environment				
Junsang			Rese	earch	Design & Implementati on			sting		Testing with Modem, Pre-Amp and rotator controller				Project Integration and Testing in Live Environment			
Suresh		Rese Des	arch / sign	Simul	cuit lation. r parts	Build circuit		Program Microcontro		Testing with motors	Integrate and test with Antenna. Calibration		Project Integration and Testing in Live Environment				
Во			Research and gather parts			Design and Implementation			Testing				Project Integration and Testing in Live Environment				

TIMELINE: Fall 2004

Month	September				October				November				December			
	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
Vinh	GUI Interface Design and development				Testing and Debugging				Fir	nal Testii Pro	ng of Ovo	erall	Documentations and Project Submission			
Junsang			Dev	search a elopmen king mod	nt for Hardware				Fir	nal Testii Pro	ng of Ov	erall	Documentations and Project Submission			
Suresh		map trackir	evelop 2 oping for ng and b alculation	the earing	Integrate with tracking and Network modules			Fir	nal Testii Pro	ng of Ov	erall	Documentations and Project Submission				
Во			op Netw module	•	Testing and Debugging				Fir	nal Testii Pro	ng of Ovo	erall	Documentations and Project Submission			

OBSTICLES

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

- Cost for components (rotator)
- Satellite footprint
- Available operational satellites
- Weather conditions in final testing stage (winter 2004)
- Lack of experience in satellite communication

QUESTIONS

HISTORY

SATELLITE SPECS

ANTENNA SYSTEM

PRE AMPLIFICATION

ROTATOR CONTROLLER

MODEM/TNC

SOFTWARE

POWER SYSTEM

BACKUP PLAN

TIMELINE

OBSTICLES

QUESTION

Questions...