Course Information

Description. This course is a comprehensive introduction to the principles and practices of computer communication networks including the design and implementation of the Internet, its protocols and applications. Topics to be covered include: layered network architectures, applications (including p2p), network programming interfaces (e.g., sockets), transport, congestion control, routing and data link protocols, local area networks, mobile and wireless networks (e.g., WiFi, GSM, 3G, 4G), and network security. Examples will be drawn primarily from the Internet (e.g., IP, TCP, UDP, and SMTP) protocol suite.

Objectives. Our goal is for students to obtain a balanced understanding of all aspects of networking through a combination of hands-on exploration and development as well as textbook learning.

Prerequisites. There are no official prerequisites for this course. However, students are expected to be comfortable working in the Unix/Linux operating system environment, and be able to program in a structured high-level programming language, such as Python, C, C++ or JAVA.

Meetings. Mondays and Wednesdays, 1:25-2:45 PM in 1250 WEB.

Instructor. Prof. Kobus Van der Merwe. Email: kobus@cs.utah.edu. Office: 3490D MEB.

Course Materials


About using the 5th edition of the textbook: I would strongly recommend getting the 6th edition as that is what we will use for all aspects of the course. While large sections of the two editions appear to be the same, there are enough small differences that would make using the 5th edition a hassle (at best).

Website. The course public website is http://www.eng.utah.edu/~cs4480/ and in Canvas at https://utah.instructure.com/courses/218331. We will use Canvas as the primary course information repository, including lecture schedule, assignments, links to course handouts etc.

Lecture notes and supplementary material. The instructor will make use of supplementary materials provided by the textbook authors (augmented as needed), including slides, lab assignments and other materials. Material used during lectures will be posted in Canvas following the lecture. However, such documents may not completely represent the material covered in the class. Students who must miss class are strongly encouraged to check with a classmate.
Student Evaluation

Grading. Grading for the course will be based on four (equally weighted) Programming Assignments (40%), Wireshark Labs (10%), Homework Assignments (10%), a Midterm Exam (20%) and a Final Exam (20%).

Submitting assignments. Homework Assignments and Wireshark Labs will be submitted through Canvas. Programming Assignments will be submitted using the handin facility on CADE Lab machines.

Late submissions. Late assignments (programming, wireshark labs and homework) will be accepted up to two days late with a 10% penalty applied to the obtained grade for each late day.

Programming assignments. Programming assignments form an important and significant part of the course and will be thoroughly evaluated.

There will be four equally weighted programming assignments: (i) Implementing a HTTP Web Proxy Server, (ii) Implementing a Reliable Transport Protocol, (iii) Implementing a Routing Algorithm and (iv) Implementing a Secure Text Messaging Application. A Python skeleton will be provided for the first assignment. The second and third assignments will make use of a simple framework in C. (Students will be expected to learn the necessary language features on their own.) The fourth assignment will make use of the openssl toolkit.

Wireshark labs. In addition to the programming assignments, the hands-on objective of this course will be achieved through a series of Wireshark labs. Students will use the Wireshark network protocol analyzer tool http://www.wireshark.org to explore the protocols covered in the course. Students will receive a grade for each assignment. For each assignment this grade may be based on a detailed or cursory evaluation, at the discretion of the instructor.

Homework assignments. Problems from the textbook will be chosen as homework assignments throughout the semester. These assignments will serve to prepare students for the type of questions they might expect to see in the two exams. Students will receive a grade for each assignment. For each assignment this grade may be based on a detailed or cursory evaluation, at the discretion of the instructor.

Exams. A midterm exam will take place in class on March 6th 2013. The final exam will take place from 1-3pm on April 29th. Location TBD.

Students who wish to appeal a grade on an assignment or an exam must do so within one week of receiving the grade.

Getting Help

Instructor office hours. By appointment. Please send me email to schedule a meeting.

Teaching assistants and office hours. TBD

Communication. For questions outside of class and TA office hours, students are encouraged to use email.

Students who would like to ask questions about the course should use the teaching staff mailing list (teach-cs4480@list.eng.utah.edu). This list will be monitored by the instructor and TAs and will be the best way to receive a timely response to questions. The instructor and/or TAs will respond to each question directly.

The instructor and TAs will use Canvas to send urgent messages to the class (e.g., corrections to assignments or changes in due dates).
Course Guidelines

Behavior in class. Students are expected to maintain professional behavior in class according to the University of Utah Student Code, which is available here: http://www.regulations.utah.edu/academics/6-400.html. Students should read the Code carefully and know what their responsibilities are. According to Faculty Rules and Regulations, it is the faculty responsibility to enforce responsible classroom behavior, beginning with verbal warnings and progressing to dismissal from class and a failing grade. Students have the right to appeal such action to the Student Behavior Committee.

Working together. Students are encouraged to discuss assignments with fellow classmates, however, each student is responsible for completing his/her own assignment. Cheating is: sharing code or other electronic files either by copying, retyping, looking at, or supplying a copy of a file. Cheating is not: discussing concepts, answering questions about concepts or clarifying ambiguities, helping someone understand how to use the computer systems or basic tools (e.g., compiler, Wireshark etc.), or helping with high-level design issues or general debugging.

Except when explicitly designated otherwise, each assignment is to be done individually. For all assignments, the solution submitted by each student will be checked against the solutions of other students for anomalies. If an anomaly is found that cannot be explained satisfactorily, the students involved will fail the course.

Of course, there must be no collaboration during examinations. Please see the University of Utah Student Code for a detailed description of the university policy on cheating.

Any student found cheating will fail the entire course.

College of Engineering guidelines. Information on withdrawing from courses, appealing grades, and more, see the College of Engineering Academic Affairs website: http://www.coe.utah.edu/academics.

Students with disabilities. The University of Utah seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in the class, reasonable prior notice needs to be given to the Center for Disability Services, 162 Union Building, 581-5020 (V/TDD). CDS will work with you and the instructor to make arrangements for accommodations.
Syllabus

Below are the key topics we plan to cover in this course, the approximate number of lectures planned for each and the corresponding chapters in Kurose and Ross.

Getting Started (2 lectures) Chapter 1
- Course overview and administrative details.
- Computer Networks and the Internet

Application Layer (4 lectures) Chapter 2
- Principles of Network Applications
- Web and HTTP
- File Transfer: FTP
- Electronic Mail
- DNS - Internet Directory Service
- Peer-to-Peer Applications
- Socket Programming

Transport Layer (4 lectures) Chapter 3
- Overview
- Multiplexing and Demultiplexing
- Connectionless Transport: UDP
- Principles of Reliable Data Transfer
- Connection-Oriented Transport: TCP
- Principles of Congestion Control
- TCP Congestion Control

Network Layer (4 lectures) Chapter 4
- Network Layer Service Models
- Router Functionality
- Internet Protocol (IP): Forwarding and Addressing in the Internet
- Routing algorithms
- Routing in the Internet
- Broadcast and multicast routing

Link Layer (3 lectures) Chapter 5
- Error-Detection and Error-Correction Techniques
- Multiple Access Links and Protocols
- Switched Local Area Networks
- Link Virtualization
- Data Center Networking
- A Day in the Life of a Web Page Request

*Security in Computer Networks* (4 lectures) Chapter 8
- Principles of Cryptography
- Message Integrity and Digital Signatures
- End-point Authentication
- Securing E-mail
- Securing TCP Connections: SSL
- Network-Layer Security
- Securing Wireless LANs
- Operational Security

*Wireless and Mobile Networks* (4 lectures) Chapter 6
- Wireless Links and Network Characteristics
- WiFi: 802.11 Wireless LANs
- Cellular Internet Access
- Mobility Management Principles
- Mobile IP
- Managing Mobility in Cellular Networks
- Wireless and Mobility: Impact on Higher-Layer Protocols