CS 4230 : Parallel Programming

Ganesh Gopalakrishnan, Mohammed S. Mahfoudh and Simone Atzeni
School of Computing
University of Utah

1
SCHOOL OF COMPUTING
THE UNIVERSITY OF UTAH
URL: www.eng.utah.edu/~cs4230

Lecture 2: The Physics of Computing

Why do we care what the hardware does?

- It used to be possible to abstract away hardware
- When computing began, one had to have spare Tubes / Transistors, HW debugging aids, hammers...
- Soon the hardware became stable and predictable and everyone forgot about the hardware.
- Especially when the cost model was based on the number of instructions executed per second
- Energy was an "afterthought"
- We are now in a strange new world
- Parallel activities running on heterogeneous cores deliver the overall performance - measured in terms of runtime as well as energy consumption
- Hardware has begun flaking as well
- Many programming notations that also address heterogeneous memory types
- A programmer wanting the maximum computing efficiency has to be aware of the nature of hardware
- Things are also changing so rapidly
- So to keep abreast, we need to know what today's hardware organizations are, and their characteristics
- MUCH IS NOW CENTERED AROUND ENERGY, LOCALITY OF DATA ACCESSES, REPRODUCIBILITY OF RESULTS, etc.

Some Basics about Electricity

- Since computers run on electricity, some basic EE must be appreciated and actually enjoyed
- So let's start with
- Voltage, Current, Resistance, Inductance, Capacitance

Galvanic Frog and Alessandro Volta

- Voltage aka Potential Difference
- Similar to column height of water in a jar

Chip Voltages

- $5 \mathrm{v}, 3.3 \mathrm{v}, 1.2 \mathrm{v}$, (very little room any more)
- Reason : Transistors have threshold voltages
- Reason : Noise margins are needed
- The lowest energy one can "get away with" is really limited by noise
- Need to store state reliably
- Need to communicate reliably

R, C, L, V, I

- Current :
- Similar to water flow
- Resistance
- Similar to water resistance (in a pipe) : V = I . R (Ohm's Law)
- Capacitance
- Similar to storage ability
- An ideal battery of 6 V ~ an infinite ocean of 6 " ht
- As you draw more, the level stays 6"
- A capacitor holding $6 \mathrm{~V} \sim$ a finite vessel of 6 " ht
- As you draw more, the level ("head") reduces
- The lower the head, the lower the pressure, hence Exp decay
- If you look at the "current" coming out of a finite vessel (water flow rate), it is proportional to the voltage difference
- I = C dv/dt
- Take a VERY LARGE finite capacity vessel : Now if you create pulsating pressure at its bottom, the head height hardly changes in response $\rightarrow>$ you can absorb the pressure pulsation \rightarrow Capacitor appears a "dead short"
- Inductance
- Similar to inertia
- Try moving a mass suddenly : you can't ; set it in motion : can't stop suddenly (huge force needed)
- $V=L$ di / dt because if you take an L (inductor) and cause a high di/dt (sudden change in motion), you get a huge

Typical Capacitances in Chips and Elsewhere

- Gate input capacitance of inverter
- https://inst.eecs.berkeley.edu/~ee42/fa01/LectNotes/ 42 24.pdf
- Typically measured in Femto Farads (e.g. 1fF)
- Which is $10^{\wedge}\{-15\}$ farads
- Capacitance of a Super Capacitor :
- Can buy a 5000 Farad Supercap!
- Can jump-start your car off of a 330 F cap array!
- http://www.youtube.com/watch?v=Pk869dPTxNg
- Used in regenerative braking, cordless screw-drivers (new rapid-recharge rapid-discharge versions) - see wikipedia

Typical Capacitances in Chips and Elsewhere

- Things to remember about Capacitances and Chips
- A lot of the power in chips is spent charging and discharging the gate capacitors
- If you have 1 transistors and have 1fF per gate, the total gate capacitance presented is 1 .. of course 1 fF
- At 2 GHz, 1 fF looks like an open circuit
- Impedance of a cap $=1 / \mathrm{j}$. omega. $C=-j /$ omega. C
- Omega at $2 \mathrm{GHz}=2$. pi.f $=6.28$ * 2 * $10^{\wedge} 9$
- $C=1 \mathrm{fF}=10^{\wedge}$ - 15
- Impedance $=-\mathrm{j} /\left(10^{\wedge} 10\right.$ * 10^-15) $=100$ kilo ohms (forget -j)

Typical Capacitances in Chips and Elsewhere

- Things to remember about Capacitances and Chips
- A lot of the power in chips is spent charging and discharging the gate capacitors
- If you have 1 B transistors and have 1 fF per gate, the total gate capacitance presented is 1 micro Farads - pretty high.
- At 2 GHz, 1 micro Farads looks like a dead short.
- Impedance of a cap $=1 / \mathrm{j}$. omega. $C=-j /$ omega.C
- Omega at $2 \mathrm{GHz}=2$. pi.f $=6.28$ * 2 * $10^{\wedge} 9$
- $C=1$ micro $F=10^{\wedge}-6$
- Impedance $=-\mathrm{j} /\left(10^{\wedge} 10\right.$ * 10^-6) $=100$ micro ohms (forget -j)
- You get the idea... little capacitances add up fast!

Here is an absolutely delightful analogy... and a puzzle

- The above situations are quite similar
- If you charge up the Cap, the amount of charge in it is CV
- The energy within it is $0.5 \mathrm{C} \mathrm{V}^{\wedge} 2$ Joules
- The battery moved a charge of CV at voltage V
- Thus the battery expended C V^2 Joules
- Where did half the energy go?
- This is independent of \mathbf{R} !!
- This means that if you fill a little vessel (a cap) from a huge one (a battery), then
- Even if you spent a certain amount of energy pushing the water thru R (narrow orifice)
- The amount of energy present in the smaller vessel is always half of what you spent
- The other half goes out as heat
- Can't avoid this!
- See the derivation at http://hyperphysics.phy-astr.gsu.edu/hbase/electric/capeng2.html

Typical Capacitances in Chips and Elsewhere

- Things to remember about Capacitances and Chips
- If you stay within a chip, a very tiny gate/transistor has to drive another tiny gate/transistor
- This is energy efficient
- The moment you have to cross chips, you have to amplify the tiny gate's output a HUGE amount
- Then drive the pins
- Then get into the other chip via a pad
- (PADs have "lightning arrestors" and such..)
- Then drive the other itty-bitty gate of a chip
- All makes cross-chip communication VERY inefficient!

How big are today's transistors wrt a virus ?

Virions are $\sim 300 \mathrm{~nm}$ in length and $\sim 18 \mathrm{~nm}$ in diameter.[12] http://en.wikipedia.org/wiki/Tobacco_mosaic_virus

https://www.google.com/search?q=cmos+22nm+transistor+photo\&espv=2\&tbm=isch\&imgil=Sw0jVD4bePQvtM\%3A \%253B5_zKVJSGKEGQbM\%253Bhttp\%25253A\%25252F\%25252Fwww.eetimes.com\%25252Fdocument.asp\%25253Fdoc_id
\%2525253D1281328\&source=iu\&usg=__a6S4ge1fsS3Vs60Mjbpv7a5S3HU\%3D\&sa=X\&ei=RUveU6-
zDcGmyASs5oCIDA\&ved=0CCsQ9QEwBg\&biw=1440\&bih=713\#facrc=_\&imgdii=_\&imgrc=Sw0jVD4bePQvtM\%253A 63B5_zKVJSGKEGQbM\%3Bhttp\%253A\%252F\%252Fm.eet.com\%252Fmedia\%252F1169841\%252F120906_intel_22_1.jpg\%3Bhttp\%253A \%252F\%252Fwww.eetimes.com\%252Fdocument.asp\%253Fdoc_id\%253D1281328\%3B628\%3B475

Lab Experiments Planned

- Saliva Ring Oscillator

- Demo that we can put 5 inverters in a loop, and power the whole circuit using a suitable galvanic cell
- e.g. paper clip, copper wire, tongue
- drink sprite and repeat, if it does not work :)
- Power CMOS operated by touch
- Cue from Sutherland's experiment
- http://web.cecs.pdx.edu/~mroncken/ARC-2012-is15_keynote_Vail.pdf
- Car brake-light turned off-on by touching gate by one finger and the other finger on +ve
- Light turns on - and stays on (gate cap holds charge)
- Hey, I reproduced this - here is a Youtube Video of me doing this experiment (with a lot of new twists !!)
- When -ve terminal is touched and gate is touched, the gate can be discharged $->$ light off

Other Lab Visits Planned

- Lab visit to see multicore server
- (have requested) Downtown Data Center Tour

So let's see some multicores (pics) ENIAC vs. Single-chip ENIAC

http://www.google.com/imgres? imgurl=http://upload.wikimedia.org/
wikipedia/commons/4/4e/
Eniac.jpg\&imgrefurl=http:// en.wikipedia.org/wiki/

ENIAC\&h=196\&w=257\&tbnid=HVRmUhC7
IBNKrM:\&zoom=1\&tbnh=153\&tbnw=200\& usg =_OWcA-0E2MI5Kf7hvy8PKq7Abk7M =\&docid=jpc3gMQF2wmnGM\&itg=1\&sa= X\&ei=alPeU-
G6G4WUyASwg4HIBw\&ved=0CJwBEPwd MAo

http://diephotos.blogspot.com/

So let's see some multicores (pics): 8-core Power-7 showing chip interconnect, Mem Controller, L3, and L2, and I/O Links

https://www.google.com/search?q=ibm+power+8+die+photo\&espv=2\&tbm=isch\&imgil=MfH0d1yPgVUZXM\%3A \%253BdBAQYM57NmOdaM\%253Bhttp\%25253A\%25252F\%25252Farstechnica.com\%25252Fgadgets
\%25252F2009\%25252F09\%25252Fibms-8-core-power7-twice-the-muscle-half-the-transistors
\%25252F\&source=iu\&usg=__NswhZ68jjewPgSJkP2Uskn-LUVM
\%3D\&sa=X\&ei=5FPeU9jQF5enyATU9oDADw\&ved=0CDkQ9QEwBg\&biw=1440\&bih=713\#facrc=_\&imgdii=MfH0d1yPgVUZXM\%3A \%3BRcT0GpPCIS4CMM\%3BMfHOd1yPgVUZXM\%3A\&imgrc=MfHOd1yPgVUZXM\%253A\%3BdBAQYM57NmOdaM\%3Bhttp\%253A\%252F \%252Fcdn.arstechnica.net\%252Fpower7_ars.jpg\%3Bhttp\%253A\%252F\%252Farstechnica.com\%252Fgadgets
\%252F2009\%252F09\%252Fibms-8-core-power7-twice-the-muscle-half-the-transistors\%252F\%3B610\%3B483

So let's see some multicores (pics)
AMD Magny Cours (6-core, showing the four Hypertransport Links HT0-HT3, North Bridge, L3,L2)

https://www.google.com/search?q=ibm+power+8+die+photo\&espv=2\&tbm=isch\&imgil=MfH0d1yPgVUZXM\%3A
\%253BdBAQYM57NmOdaM\%253Bhttp\%25253A\%25252F\%25252Farstechnica.com\%25252Fgadgets
\%25252F2009\%25252F09\%25252Fibms-8-core-power7-twice-the-muscle-half-the-transistors
\%25252F\&source=iu\&usg=__NswhZ68jjewPgSJkP2Uskn-LUVM
\%3D\&sa=X\&ei=5FPeU9jQF5enyATU9oDADw\&ved=0CDkQ9QEwBg\&biw=1440\&bih=713\#facrc=_\&imgdii=MfH0d1yPgVUZXM\%3A \%3BRcT0GpPCIS4CMM\%3BMfHOd1yPgVUZXM\%3A\&imgrc=MfHOd1yPgVUZXM\%253A\%3BdBAQYM57NmOdaM\%3Bhttp\%253A\%252F \%252Fcdn.arstechnica.net\%252Fpower7_ars.jpg\%3Bhttp\%253A\%252F\%252Farstechnica.com\%252Fgadgets \%252F2009\%252F09\%252Fibms-8-core-power7-twice-the-muscle-half-the-transistors\%252F\%3B610\%3B483

Some of the subsystems are explained here

- http://en.wikipedia.org/wiki/Northbridge \%28computing\%29

So let's see some multicores (pics)
AMD Magny Cours (6-core, showing the four Hypertransport Links HT0-HT3, North Bridge, L3,L2)

A Si wafer with power chips on it. (What do we do with the chips that fall beyond the perimeter ?!)

https://www.google.com/search?q=ibm+power+8+die+photo\&espv=2\&tbm=isch\&imgil=MfH0d1yPgVUZXM\%3A
\%253BdBAQYM57NmOdaM\%253Bhttp\%25253A\%25252F\%25252Farstechnica.com\%25252Fgadgets
\%25252F2009\%25252F09\%25252Fibms-8-core-power7-twice-the-muscle-half-the-transistors
\%25252F\&source=iu\&usg=__NswhZ68jjewPgSJkP2Uskn-LUVM
\%3BVQHbqk6IdRK0MM\%3Bhttp\%253A\%252F\%252Fsi.wsj.net\%252Fpublic\%252Fresources\%252Fimages\%252FMK-
CF317_IBMGOO_G_20130805180127.jpg\%3Bhttp\%253A\%252F\%252Fonline.wsj.com\%252Fnews\%252Farticles
\%252FSB10001424127887323420604578650412719931232\%3B553\%3B369

Nasty Realities: Cracks, Aging, Metal Migration, Variability, Negative Temperature Bias Instability, Alpha Particle Strikes, Inability to avoid gates/flops failing due to inadequate margins, Dynamic Voltage and Frequency Stepping Noise, ...

- Cracks develop in metal wires, vias (connections thru holes)
- Chips age in many ways, including
- Thermal stresses that accelerate cracks
- Then the current density goes up
- That leads to more thermal stresses, etc
- Distributing workload on a multicore to even out the temperature profile is a good idea
- NBTI causes the transistor threshold voltages to change
- This causes the voltage needed to turn off/on a chip to change
- Dynamically lowering frequency and voltage often saves energy
- Lowering voltages : margin lower
- Lowering frequency or even turning off clock (clock gating) : possible and often done
- According to Rob Aitken (ARM) and others present at a recent NSF/SRC workshop
- Binning is done to recover and resell partially working multicores
E.g. IBM Cell Broadband Engine used to be sold as 5-core chips
- The yield was so low that unless this was done, finding perfect 6-core parts was difficult (can't throw away partially working chips..)
- Imagine drones and other energy-critical systems that fly high (so are more prone to ambient noises and radiation also) : their computations cannot go astray
- The same for computer security applications - e.g. securing cars etc
- Future cars will be Chok-Full of Electronics ; Despite there being power, parasitic power harvesting can reduce required wiring

Power and Energy

- Power is rate of energy burn / production etc.
- Heat is proportional to power (not energy) because if you produce too much energy too quickly (i.e. high power), there isn't time for that heat energy to dissipate $\rightarrow>$ temperature rises
- Voltage times Current = Power
- 10 A at 1 V and 1 A at $10 \mathrm{~V} \rightarrow$ same power
- But you need thicker wires to ship the former power
- This explains why we step up voltage to 1000 KV and such before shipping long distance
- (Low current, so wire of same size has less l^2 R loss)
- Why HV DC is preferred : there isn't that much capacitive charge / discharge loss
- Power Plant in Delta Utah ships HVDC for illuminating LA / NV ..
- They get the electricity - we burn coal
- Back pressure : So Delta is changing to Natural Gas (else CA can't buy because of their cleaner energy mandate)

Power Line at Delta Utah

It is a bipolar overhead power line 488 miles $(785 \mathrm{~km})$ long, and can transfer a maximum power of 2,400 megawatts at $\pm 500 \mathrm{kV}$. The part of the line that travels through the Mojave Desert is followed by many other AC 500 kV lines and Interstate 15.
2.4GW/500KV
=
4800 A
This is crazy! (but w/o high voltage, current goes up even more and l^2 R
loss
will be huge)

Energy Consumption of Data Centers and HPC Installations

- See the TOP 500 list (as of Aug 3, 2014)
- http://www.top500.org/lists/2014/06/

Rank	Site	System	Cores	$R_{\text {max }}$ (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
(1)	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200 GHz , TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
(2)	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200 GHz , Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
(3)	DOE/NNSALLLNL United States	Sequoia - BlueGene/Q, Power BQC 16 C 1.60 GHz , Custom IBM	1,572,864	17,173.2	20,132.7	7,890
(4)	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
(5)	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60 GHz , Custom IBM	786,432	8,586.6	10,066.3	3,945
(6)	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600 GHz , Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700 GHz , Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
8	Forschungszentrum Juelich (FZ.J) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600 GHz , Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301
9	DOE/NNSA/LLNL United States	Vulcan - BlueGene/Q, Power BQC 16 C 1.600 GHz , Custom Interconnect IBM	393,216	4,293.3	5,033.2	1,972
(10)	Government United States	Cray XC30, Intel Xeon E5-2697v2 12C 2.7GHz, Aries interconnect Cray Inc.	225,984	3,143.5	4,881.3	

We will now learn about microprocessor organizations, and also witness some of its manufacture (via Youtube videos)

- Here is how CPU chips are made
- Courtesy Global Foundries
- https://www.youtube.com/watch?v=qm67wbB5Gml
- Here is how motherboards are made
- Courtesy of Gigabyte Inc
- http://www.youtube.com/watch?
annotation id=annotation 418185\&feature=iv\&src vid=Va3Bfjn4inA\&v=5vWrEmpRX Q
- Now read this excellent webpage (Wikipedia) on various parallel computing systems : http:// en.wikipedia.org/wiki/Parallel computing
- This is a great set of notes on microprocessor organizations
- http://www.cs.cmu.edu/~fp/courses/15213-s07/lectures/27-multicore.pdf
- Notice that with Hyperthreading (a name coined by Intel), one thread can share FPU resources while another thread may be busy with Integer units
- So finally, you can have cores with multiple threads running on it, but some of these threads can also run concurrently sharing resources on the chip
- Read about Beowulf Clusters : http://en.wikipedia.org/wiki/Beowulf cluster

These are handy tools to see the performance of a Linux machine

- http://www.tecmint.com/command-line-tools-to-monitor-linux-performancel
(Courtesy, Bailey et al. ; Also from Dongarra)
How the aggregate compute power of ALL the top 500 machines is surpassed by the 500th ranked machine a decade later. Will this trend continue? Is this a meaningful metric, given that "TOP 500" is evaluated by the ability to do LINPACK fast - not entirely representative of many real-world applications? Regardless, it is very interesting that so much progress used to happen over a decade.

Figure 1: Performance of the Top 500 computers: Red $=\# 1$ system; orange $=$ $\# 500$ system; blue $=$ sum of \#1 through \#500.

thanks!

- www.cs.utah.edu/fv
- Thanks to my former students who have taught me everything I know about FV and its relevance in the industry

