

							IO	Bloc	ks				
•	οι	itsi Ea co	de ch j nfig	wo oin gure	rld can d a	larg	-	NO	OTE	e! N	0 5V	•	
number of ways Different signal				2	g	Single-Ended IOSTANDARD	1.2V	1.5V	1.8V	2.5V	3.3V		
voltages and drive currents						LVTTL	-	-	-	-	Input/ Output		
						LVCMOS33					Input/ Outpu		
		Outou	t Drive	Curre	nt (mA)		LVCMOS25				Input/ Output	Input
IOSTANDARD	2	4	6	8	12	, 16		LVCMOS18	-	-	Input/ Output	Input	Input
LVTTL	~	~	~	~	✓	✓		LVCMOS15		Input/	Input	Input	Input
LVCMOS33	✓	 ✓ 	\checkmark	\checkmark	 ✓ 	~			Input/	Output			
VCMOS25	\checkmark	\checkmark	✓ ✓	✓ ✓	 ✓ 	-		LVCMOS12	Output	Input	Input	Input	Input
	▼ ✓	▼ ✓	▼ ✓	v	-	-		PCI33_3			•		Input/ Outpu
LVCMOS15								PCI66 3		-	-		Input/ Outpu

Interconn	lect	
vork		
Switch Matrix IOB Switch Matrix IOB	Switch Matrix IOB Switch Matrix	
Switch Matrix CLB Switch Matrix CLB	Switch Matrix CLB Switch Matrix	
Switch Arrive CLB Switch Arrive CLB	Switch Matrix CLB Switch Matrix	
Switch CLB Switch Atrix CLB	Switch Matrix CLB Switch Matrix	
Switch CLB Switch CLB	Switch Matrix CLB Switch Matrix	
	ct to 'switch matrix' w vork matrix interconnects Switch + 10B Switch + CLB Switch + CLB	Switch IOB Switch IOB Switch Matrix IOB Switch IOB Switch Switch IOB Switch IOB Switch Matrix IOB Switch IOB Switch Switch IOB Switch IOB Switch Matrix IOB Switch IOB Switch Switch IOB Switch

Four types of wires			
Four types Image: CLB image: CL			Interconnect
(horizontal channel shown as an example) Horizontal and Vertical Double Lines (horizontal channel shown as an example) Direct Connections CLB CLB CLB CLB CLB CLB CLB CLB USUBLING (brizontal channel shown as an example) CLB		Vertical Long Lines (horizontal channel shown as an example) Horizontal and	
Vertical Double Lines (horizontal channel shown as an example) Direct Connections CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB CLB	orwnes	(horizontal channel shown as an example)	
		(horizontal channel shown as an example)	
		Direct Connections	
	CS/EE 271		

				Spa	arta	an	XC3	BE5	5005	5		
Device	System Gates	Equivalent Logic Cells	(Rows	CLB One CLB = Columns	Array Four Slid Total CLBs	ces) Total Slices	Distributed RAM bits ⁽¹⁾	Block RAM bits ⁽¹⁾	Dedicated Multipliers	DCMs	Maximum User I/O	Maximum Differential I/O Pairs
XC3S100E	100K	2,160	22	16	240	960	15K	72K	4	2	108	40
XC3S250E	250K	5,508	34	26	612	2,448	38K	216K	12	4	172	68
XC3S500E	500K	10,476	46	34	1,164	4,656	73K	360K	20	4	232	92
XC3S1200E	1200K	19,512	60	46	2,168	8,672	136K	504K	28	8	304	124
XC3S1600E	1600K	33,192	76	58	3,688	14,752	231K	648K	36	8	376	156
	CS/EE 3	710										

Structural Template
<pre>// RANB16_59_39 : In order to incorporate this function into the design, // Verilog : the following instance declaration needs to be placed // instance : in the body of the design code. The instance name // declaration : (RAMB16_59_59_inst) and/or the port declarations within the // code : parenthesis may be changed to properly reference and // : connect this function to the design. All inputs // : and outputs must be connected.</pre>
// <cut below="" code="" line="" this=""></cut>
// RAMB16_S9_S9: Virtex-II/II-Pro, Spartan-3/3E 2k x 8 + 1 Parity bit Dual-Port RAM // Xilinx HDL Language Template, version 10.1.3
RAMB16 S9 S9 #(.INIT_A(9'h000), // Value of output RAM registers on Port A at startup .INIT_B(9'h000), // Value of output RAM registers on Port B at startup .SRVAL_A(9'h000), // Port A output value upon SSR assertion .SRVAL_B(9'h000), // Port B output value upon SSR assertion .URITE_MODE_A("UMPITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .URITE_MODE_A("UMPITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
<pre>// The following INIT_xx declarations specify the initial contents of the RAM // Address 0 to 511</pre>
CS/EE 3710

// The next set of INITP_xx are for the parity bits // Address 0 to 511 INITP_00(256+hoodooocococococococococococococococococ
<pre>// Address 0 to 511</pre>
<pre>// Address 0 to 511</pre>
<pre>// Address 0 to 511</pre>
.INITP_00(256'h000000000000000000000000000000000000
.INITE_01(256'haoooooooooooooooooooooooooooooooooooo
.NITF_02(256+haocococococococococococococococococococ
.INITE_03(256'h000000000000000000000000000000000000
// Address 1024 to 1535
,INITE 04(256'N000000000000000000000000000000000000
.INITP 05(256'h000000000000000000000000000000000000
.N/1/
. INITE 06(256'h000000000000000000000000000000000000
. INITP 07 (256' h000000000000000000000000000000000000
AMB16 \overline{s} 9 S9 inst (
.DOA(DOA), // Port A 8-bit Data Output
.DOB(DOB), // Port B 8-bit Data Output .DOPA(DOPA), // Port A 1-bit Parity Output
.DOPB(DOPB), // Port B 1-bit Parity Output
.ADDRA(ADDRA), // Port & 11-bit Address Input .ADDRB(ADDRB), // Port B 11-bit Address Input
.CLKA(CLKA), // Port & Clock
CLKB(CLKB), // Port B Clock
DIA(DIA), // Port A 8-bit Data Input
.DIB(DIB), // Port B 8-bit Data Input
.DIPA(DIPA), // Port A 1-bit parity Input
 .DIPB(DIPB), // Port-B 1-bit parity Input
.ENA(ENA), // Port & RAM Enable Input
ENB(ENB), // Port B RAM Enable Input
.SSRA(SSRA), // Port A Synchronous Set/Reset Input
.SSRB(SSRB), // Port B Synchronous Set/Reset Input .WEA(WEA), // Port A Write Enable Input
.WLA(WLA), // FULL A WIILE ENABLE INPUL

Tal	ble 6-4: S	ingle-Po	I rt and Dual-F			uted RA	M
Primitive		RAM Size (Depth x Width)		Гуре	Address Inputs		
	RAM16X1S		16 x 1	Sing	gle-port	A3, A2, A1, A0	
RAM32X1S		32 x 1	Sing	gle-port	A4, A3, A2, A1, A0		
RAM64X1S		64 x 1	Sing	gle-port	A5, A4, A3, A2, A1, A0		
	RAM16X1D		16 x 1	Du	al-port	A3, A2, A1, A0	
	ual-Port R	AM Fund			and DPR	A[#:0] signals are address bu	D SPO
Inputs WE (mode) WCLK D		Outputs SPO DPC		A[#:0]	_	R/W Port	
	X	X	data_a	data d			
, ,			uata_d	uata_d	1		DPO
0 (read)		x	data a	data d	1		
0 (read) 1 (read)	0 1	X	data_a data a	data_d data_d	-		DPRA[#:0]
0 (read)	0		data_a data_a D	data_d data_d data_d			

Distributed RAM
<pre>parameter RAM_WIDTH = <ram_width>; parameter RAM_ADDR_BITS = <ram_addr_bits>;</ram_addr_bits></ram_width></pre>
<pre>reg [RAM_WIDTH-1:0] <ram_name> [(2**RAM_ADDR_BITS)-1:0];</ram_name></pre>
<pre>wire [RAM_WIDTH-1:0] <output_data>;</output_data></pre>
<reg_or_wire> [R&M_ADDR_BITS-1:0] <read_address>, <write_address>; <reg_or_wire> [R&M_WIDTH-1:0] <input_data>;</input_data></reg_or_wire></write_address></read_address></reg_or_wire>
<pre>always @(posedge <clock>) if (<write_enable>) <ram_name>[<write_address>] <= <input_data>;</input_data></write_address></ram_name></write_enable></clock></pre>
<pre>assign <output_data> = <ram_name>[<read_address>];</read_address></ram_name></output_data></pre>
Dual-Port Distributed RAM
CS/EE 3710

Multipliers
<pre>module mult18x18sio(a,b,clk,prod); input [7:0] a; input [7:0] b; input clk; output [15:0] prod; reg [15:0] prod; always @(posedge clk) prod <= a*b; endmodule</pre>

Synthesis O	utput (1	nips exa	mple)		
Di	evice Utilization Summ	nary			
Logic Utilization	Used	Available	Utilization		
Number of Slice Flip Flops	79	9,312	1%		
Number of 4 input LUTs	193	9,312	2%		
Logic Distribution					
Number of occupied Slices	123	4,656	2%		
Number of Slices containing only related logic	123	123	100%		
Number of Slices containing unrelated logic	0	123	0%		
Total Number of 4 input LUTs	193	9,312	2%		
Number used as logic	161				
Number used for Dual Port RAMs	32				
Number of bonded IOBs	'	'			
Number of bonded	19	232	8%		
Number of RAMB16s	1	20	5%		
Number of BUFGMUXs	1	24	4%		
CS/EE 3710					

Impl	ement	Outpu	ıt	(m	nip)S	e	X	a	m	p	le)
			D D D D D D	1 0									
CS/EE 3710													

ASIC	vs. FPGA
FPGA & ASIC Design Advantages	
FPGA Design Advantages	ASIC Design Advantages
Faster time-to-market - no layout, masks or other manufacturing steps are needed	Full custom capability - for design since device is manufactured to design specs
No upfront NRE (non recurring expenses) - costs typically associated with an ASIC design	Lower unit costs - for very high volume designs
Simpler design cycle - due to software that handles much of the routing, placement, and timing	Smaller form factor - since device is manufactured to design specs
More predictable project cycle - due to elimination of potential re- spins, wafer capacities, etc.	Higher raw internal clock speeds
Field reprogramability - a new bitstream can be uploaded remotely	