
1

Mini-MIPS

From Weste/Harris
CMOS VLSI Design

CS/EE 3710

Based on MIPS

In fact, it’s based on the multi-cycle MIPS
from Patterson and Hennessy

Your CS/EE 3810 book...
8-bit version

8-bit data and address
32-bit instruction format
8 registers numbered $0-$7

$0 is hardwired to the value 0

2

CS/EE 3710

Instruction Set

CS/EE 3710

Instruction Encoding

3

CS/EE 3710

Fibonacci C-Code

CS/EE 3710

Fibonacci C-Code

Cycle 1: f1 = 1 + (-1) = 0, f2 = 0 – (-1) = 1
Cycle 2: f1 = 0 + 1 = 1, f2 = 1 – 1 = 0
Cycle 3: f1 = 1 + 0 = 1, f2 = 1 – 0 = 1
Cycle 4: f1 = 1 + 1 = 2, f2 = 2 – 1 = 1
Cycle 5: f1 = 2 + 1 = 3, f2 = 3 – 1 = 2
Cycle 6: f1 = 3 + 2 = 5, f2 = 5 – 2 = 3

4

CS/EE 3710

Fibonacci Assembly Code

Compute 8th Fibonacci number (8’d13 or 8’h0D)
Store that number in memory location 255

CS/EE 3710

Fibonacci Machine Code

101000

4

Assembly Code Machine Code

5

CS/EE 3710

Architecture

CS/EE 3710

Architecture

6

CS/EE 3710

Another View

CS/EE 3710

Control FSM

7

CS/EE 3710

Connection to External Memory

CS/EE 3710

External Memory from Book
// external memory accessed by MIPS
module exmemory #(parameter WIDTH = 8)

(input clk,
input memwrite,
input [WIDTH-1:0] adr, writedata,
output reg [WIDTH-1:0] memdata);

reg [31:0] RAM [(1<<WIDTH-2)-1:0];
wire [31:0] word;

// Initialize memory with program
initial $readmemh("memfile.dat",RAM);

// read and write bytes from 32-bit word
always @(posedge clk)

if(memwrite)
case (adr[1:0])

2'b00: RAM[adr>>2][7:0] <= writedata;
2'b01: RAM[adr>>2][15:8] <= writedata;
2'b10: RAM[adr>>2][23:16] <= writedata;
2'b11: RAM[adr>>2][31:24] <= writedata;

endcase

assign word = RAM[adr>>2];
always @(*)

case (adr[1:0])
2'b00: memdata <= word[7:0];
2'b01: memdata <= word[15:8];
2'b10: memdata <= word[23:16];
2'b11: memdata <= word[31:24];

endcase
endmodule

Notes:
• Endianess is fixed here
• Writes are on posedge clk
• Reads are asynchronous
• This is a 32-bit wide RAM
• With 64 locations
• But with an 8-bit interface...

8

CS/EE 3710

Exmem.v

module exmem #(parameter WIDTH = 8, RAM_ADDR_BITS = 8)
(input clk, en,
input memwrite,
input [RAM_ADDR_BITS-1:0] adr,
input [WIDTH-1:0] writedata,
output reg [WIDTH-1:0] memdata);

reg [WIDTH-1:0] mips_ram [(2**RAM_ADDR_BITS)-1:0];

initial $readmemb("fib.dat", mips_ram);

always @(posedge clk)
if (en) begin

if (memwrite)
mips_ram[adr] <= writedata;

memdata <= mips_ram[adr];
end

endmodule

•This is synthesized to
a Block RAM on the
Spartan3e FPGA

• It’s 8-bits wide
• With 256 locations
• Both writes and reads

are clocked

CS/EE 3710

Exmem.v

module exmem #(parameter WIDTH = 8, RAM_ADDR_BITS = 8)
(input clk, en,
input memwrite,
input [RAM_ADDR_BITS-1:0] adr,
input [WIDTH-1:0] writedata,
output reg [WIDTH-1:0] memdata);

reg [WIDTH-1:0] mips_ram [(2**RAM_ADDR_BITS)-1:0];

initial $readmemb("fib.dat", mips_ram);

always @(posedge clk)
if (en) begin

if (memwrite)
mips_ram[adr] <= writedata;

memdata <= mips_ram[adr];
end

endmodule

This is synthesized to
a Block RAM on the
Spartan3e FPGA

Note clock!

9

CS/EE 3710

Block RAM

Byte-wide Block RAM is
really 9-bits – parity bit...

(Actually dual ported too!)

CS/EE 3710

Our Block Ram

Read-first or Write-first?
always @(posedge clk)

if (en) begin
if (memwrite)

mips_ram[adr] <= writedata;
memdata <= mips_ram[adr];

end

10

CS/EE 3710

Read_First Template

CS/EE 3710

Write_First Template

11

CS/EE 3710

Read_First waveforms

CS/EE 3710

Write_First Waveforms

12

CS/EE 3710

Block RAM Organization

Each block is
18k bits...

Block RAM is
Single or Dual
ported

CS/EE 3710

Recall – Overall System

Clock Clk

Clk

13

CS/EE 3710

Recall – Overall System

Clock Clk

Clk

So, what are the implications of using a RAM that has
both clocked reads and writes instead of clocked writes
and async reads? (we’ll come back to this question...)

CS/EE 3710

mips Block Diagram

14

CS/EE 3710

mips.v
// simplified MIPS processor
module mips #(parameter WIDTH = 8, REGBITS = 3)

(input clk, reset,
input [WIDTH-1:0] memdata,
output memread, memwrite,
output [WIDTH-1:0] adr, writedata);

wire [31:0] instr;
wire zero, alusrca, memtoreg, iord, pcen, regwrite, regdst;
wire [1:0] aluop,pcsource,alusrcb;
wire [3:0] irwrite;
wire [2:0] alucont;

controller cont(clk, reset, instr[31:26], zero, memread, memwrite,
alusrca, memtoreg, iord, pcen, regwrite, regdst,
pcsource, alusrcb, aluop, irwrite);

alucontrol ac(aluop, instr[5:0], alucont);
datapath #(WIDTH, REGBITS)

dp(clk, reset, memdata, alusrca, memtoreg, iord, pcen,
regwrite, regdst, pcsource, alusrcb, irwrite, alucont,
zero, instr, adr, writedata);

endmodule

CS/EE 3710

Controller

State Codes

Useful constants to compare against

State Register

15

CS/EE 3710

Control FSM

CS/EE 3710

Next State Logic

16

CS/EE 3710

Output Logic

Continued for the other states...

Very common way
to deal with default
values in combinational
Always blocks

CS/EE 3710

Output Logic

Why AND these two?

Two places to update the PC
pcwrite on jump
pcwritecond on BEQ

17

CS/EE 3710

ALU Control

CS/EE 3710

ALU

Invert b if subtract...

add is a + b
sub is a + ~b +1

subtract on slt
then check if answer is negative

18

CS/EE 3710

zerodetect

CS/EE 3710

Register File

What is this synthesized
into?

19

CS/EE 3710

Synthesis Report

CS/EE 3710

Synthesis Report

20

CS/EE 3710

Synthesis Report

Two register
files? Why?

CS/EE 3710

Datapath
Fairly complex...

Not really, but it does
have lots of registers
instantiated directly

It also instantiates muxes...

Instruction Register

21

CS/EE 3710

Datapath continued

Flops and
muxes...

RF and
ALU

CS/EE 3710

Flops and MUXes

22

CS/EE 3710

Back to the Memory Question

What are the implications of using RAM that
is clocked on both write and read?

Book version was async read
So, let’s look at the sequence of events that
happen to read the instruction
Four steps – read four bytes and put them in four
slots in the 32-bit instruction register (IR)

CS/EE 3710

Instruction Fetch

23

CS/EE 3710

Instruction Fetch

CS/EE 3710

Instruction Fetch

• Memread, irwrite, addr, etc are set up just after clk edge
• Data comes back sometime after that (async)
• Data is captured in ir0 – ir3 on the next rising clk edge
• How does this change if reads are clocked?

24

CS/EE 3710

mips + exmem

One of those rare cases where using both edges
of the clock is useful!

mips is expecting async reads exmem has clocked reads

CS/EE 3710

Memory Mapped I/O

Break memory space into pieces (ranges)
For some of those pieces: regular memory
For some of those pieces: I/O

That is, reading from an address in that range results
in getting data from an I/O device
Writing to an address in that range results in data
going to an I/O device

25

CS/EE 3710

Mini-MIPS Memory Map

I/O
Switches/LEDs

Code/Data

Code/Data

Code/Data
00

3F
40

7F
80

BF
C0

FF

64 bytes

Top two address
bits define regions

8-bit
addresses

256 bytes
total!

0000 0000

0011 1111
0100 0000

0111 1111

1000 0000

1011 1111

1100 0000

1111 1111

CS/EE 3710

Enabled Devices

Only write to that device
(i.e. enable it) if you’re
in the appropriate memory
range.

Check top two address bits!

26

CS/EE 3710

MUXes for Return Data

Use MUX to decide if
data is coming from memory
or from I/O

Check address bits!

CS/EE 3710

Lab2 in a Nutshell

Understand and simulate mips/exmem
Add ADDI instruction
Fibonacci program – correct if 8’0d is written to
memory location 255

Augment the system
Add memory mapped I/O to switches/LEDs
Write new Fibonacci program
Simulate in ISE
Demonstrate on your board

27

CS/EE 3710

My Initial Testbench...

CS/EE 3710

My Initial Results

