
CS/EE 3710 — Digital System Design
Checkoff #1 — Register File and ALU

Overview
The instruction set of the CR16 uses standard 16-bit integerALU operations. So, if we assume that the

decoding has been done (actually you will design the decoderin a following lab), what you need to build
to execute each instruction is an ALU to compute the numbers,and a register file to provide arguments
and hold results. So, this checkpoint has you design and demonstrate those pieces.

As an aside, it’s interesting to note how much of the machine can be designed before knowing the
complete picture of what the machine will look like. There are a set of basic things that are common to a
number of different designs. Building these basic components (memory, register file, ALU, etc) doesn’t
really require knowing much more than the word size and the overall plan. Filling in the details later will
determine the precise character of the final machine. Most VLSI design systems, for example, have large
libraries of these generic parts which can be used to design awide variety of different machine types.

Note: This checkpoint, and all subsequent checkpoints, refer to thebaseline instruction set for the
class processor. You can see the details of the CS/EE 3710 baseline ISA on the class web site at
www.eng.utah.edu/˜cs3710/handouts/ISA.pdf . The instructions marked with * are the re-
quired baseline subset. The instructions marked with a *? are very strongly encouraged instructions.
Basically your group will have to argue convincingly that your application will never use that instruc-
tion to get out of implementing it. The instructions with no marking are optional, and probably most
groups won’t deal with them. The optional instructions mostly deal with exceptions and system processor
state, and I expect that most people can get by with polling intheir programs and won’t need the extra
complexity of interrupts.

Execution Datapath
Looking at the Baseline instruction set you should notice a few things:

• The word size is 16 bits. Therefore, although it’s not absolutely essential, it would be natural to
have a 16 bit ALU. It’s not required because you could clearlydo the ALU operations with a smaller
ALU in a sequential way. The 16-bit result could, for example, be generated using an 8-bit ALU
and two timesteps. Going to the extreme, you could use a single-bit ALU and iterate 16-times for
each ALU operation. As an aside this is actually the approachthat was used on the Connection
Machine. This was a machine designed to be massively parallel. The full configuration had 64k
(i.e. 65,536) total processors. In order to physically assemble this machine, each processor had to
be very small so that many of them could fit on a single chip. Each processor had a single-bit ALU
and operations were either done in sequence on a single processor, or done by combining processors
into groups.

Anyway, getting back to the point, your ALU should probably be 16-bits wide to match the data
word size.

• The instruction set supports both ADD and SUB instructions,so your ALU should also support
these operations. Reading the CR16 handout carefully you will note that signed numbers are repre-
sented as two’s complement numbers. So, your ALU should operate on two’s complement, and can
use this representation for implementing subtraction. Themain difference between a two’s com-
plement ALU and unsigned ALU is in the way condition codes aregenerated. Your ALU needs to
generate condition codes for both assumptions. That is, theALU doesn’t know if the bit patterns it
sees on the input are unsigned or two’s complement, so it has to generate both signed and unsigned



condition codes on every operation and let the programmer sort things out by choosing to look at
one code or the other.

The condition codes required by the Baseline instruction set are defined here and also in the ISA
document. Note that the ADDU and ADDUI instructions are justlike ADD and ADDI but they
don’t set any condition codes.

C — The Carry bit determines whether a carry or borrow occurredafter unsigned addition or
subtraction. 0 means no carry or borrow, 1 means a carry or borrow occurred.

L — The Low flag is set by comparison operations. L is set to 1 if the Rdest operand is less than
the Rsrc operand when they are both interpreted asunsigned numbers.

F — The Flag bit is used by arithmetic operations to signal arithmetic overflow (this is sometimes
called the V bit on other machines). This bit should be set of there’s a signed overflow on a
signed addition or subtraction.

Z — The Z bit is set by the comparison operation. It is set to 1 if the two operands are equal, and
is cleared otherwise.

N — The Negative bit is set by the comparison operation. It is set to 1 if the Rdest operand is less
than the Rsrc operand when both are considered to besigned integers.

• The processor supports logical operations of AND, OR and XOR. Like the arithmetic operations,
these can either take two registers as arguments, or one register and an immediate value.

Note that the baseline instruction set does not have a NOT operation to invert all the bits of a register.
It’s worth considering if that might be useful for your application. One typical way to get around
this issue is to XORI with a constant of all 1’s, but in our casethe 8-bit immediate values are zero-
filled in the higher order bits, so that doesn’t work. Alternatively you could load up a register with
all 1’s and then XOR against that register for NOT.

• The Baseline instruction set has one shift instruction: logical shift. An obvious extension of the
baseline set would include an arithmetic shift. These instructions have an immediate field as part
of the instruction. In the full processor design this is usedto indicate how many places to shift. A
value of 1 in the immediate field shifts the argument registerby 1 place to the left. A value of -3
indicates a shift of 3 places to the right. In our Baseline processor, you can assume that all shifts
will be by one only. The only legal values for the immediate are 1 and -1 to indicate left and right
shifts. You are, of course, free to augment this in your processor.

• Branch targets are computed as a displacement from the current PC. To compute the branch target
a sign-extended offset in the immediate field of the instruction is added to the current PC and
written back to the PC if the branch condition is true. Because the displacement is signed you can
branch forwards or backwards from the current PC. But, because the imm field is only 8 bits in
our instruction encoding that means that you can only branchto -128 or 127 instructions past the
current instruction using the baseline instruction set.

• Jump targets are taken directly from a register. In the case of a jump the register that holds the jump
target is written directly to the PC if the jump condition evaluates to true.

• Jump and Link (JAL) is just like a jump, but the the PC+1 value is also written to a register. This
is known as the link register and lets you jump to a subroutineand then return back to the point
in the code where the subroutine was called. You can do this with a JUC Rlink instruction (jump
unconditional to the value that you stored in the Rlink regsiter). This is traditionally an instruction



that gives people trouble when they implement it. It’s not hard, but you do need to get the details
right and make sure that eventually you provide a path for thePC to get into the register file. That’s
actually for a later checkpoint though.

• Load and store instructions need to use values in registers as memory addresses. So, you might want
a separate path to the Memory Address Register (MAR), or you might put these values through the
ALU in some sort of “pass through” mode. Somhow these register values must be usable as memory
addresses. Perhaps you can postpone this decision to a future checkpoint too when you implement
the MAR and MDR.

There’s not a lot of room in this instruction encoding for a LOAD or STORE with an indexed ad-
dress. That is, some machines allow you to take the base address in a register and add an immediate
from the LOAD or STORE to get the final memory address. You could do this with the last unused
opcode on Page 2 of the ISA handout and use the xxx bits as a three bit offset, but I’m not sure
that’s worth the trouble.

Looking at these constraints it is possible to do a general layout for the execution datapath of the
machine. The important thing at this point is not to get everything exactly right the first time, but to make
sure that you haven’t made anything impossible that you willneed to do later. The set of control points in
this datapath (function codes, mux select signals, latch enables, etc) will be controlled by the control state
machine and the decoded instruction.

Register File
The register file must have two read ports. You must be able to read two arguments from the register

file to feed the ALU. It also must have a single write port so that you can write back the result. However,
since one of the source registers is overwritten with the result, it need only have two addresses specified.
These addresses come from the decoded instruction word. Youprobably want to use Verilog similar to
the register file description in the mips.v code for this, butremember that you don’t need an independent
write address. One of the read addresses is also the write address.

The ALU should be able to read these two register’s contents and perform an operation on them.
However, the ALU must also be able to operate on a register andan immediate value (an ADDI for
example), and the PC might also need to be combined with an immediate value (for a displacement-
branch for example). These immediates will need to be sign-extended before going into the ALU. You
should also consider how to describe sign extension in Verilog (hint - think about concatenation). So
muxes on the inputs of the ALU seem required. Also, it’s possible that a register value might be sent to
the shifter instead of the ALU. So, the output of the execution unit might come from either the ALU or
the shifter. Sounds like we need another mux on the output side. One example of a possible organization
is shown in Figure 1.Don’t take this block as the required organization! This is just an example of how
things might be organized. It’s not even guaranteed to be correct for all the instructions that the Baseline
instruction set needs. If you have a different organizationin mind, by all means use that. Just make
sure that it is able to compute all the values that will be required by the given instruction set! By being
clever you may be able to reduce the number of muxes, or combine units together, or modify things in any
number of interesting ways.

One approach to designing this ALU datapath is to look at every single instruction that you’re in-
terested in (i.e. the Baseline instruction set, plus any additional instructions you’re thinking about), and
check that each one can be accommodated by your datapath.

Some things not shown in Figure 1 are the control points in thedatapath. The ALU, for example,
will have a function code coming from the control path that tells it which operation it is actually doing
at the moment. The muxes all have select inputs telling them which way they are switched. The latches
have enable signals, etc. All these signals are the control points into the execute unit that allows the state
machine controller to make it do the right things for each individual instruction. This is all very similar to



counter

immediate

R
e

g
is

te
r

R
e

g
is

te
r

R
e

g
is

te
r

R
e

g
is

te
r

MUX

Register

File

addr

addr data

data

data

src addr

MUX
ALU output

program

dst addr

MUX

R
e

g
is

te
r

S
h

if
te

r

ALU

F
igure

1:
O

ne
P

ossible
A

L
U

O
rganization



the mips.v that we looked at in lab2, but of course it’s all different because this is a different instruction
set!

Remember that your ALU must generate condition codes that will be latched into the processor status
register (PSR). Your ALU should generate all the Baseline condition codes. Also pay attention to which
instructions update the condition code register! Not all ALU instructions update the PSR register, and
even those that do, don’t all update it in the same way! Some instructions only set some of the bits, and
some instructions don’t set any of the bits. Not even all the ADD instructions set the PSR. So, you need
to have control over whether the PSR is updated or not. The decoder you design later can decide which
PSR bits are updated, but you at least need to plan for the possibility of different sets of bits being set at
different times.

What to Do
For this checkpoint you should design an ALU and a register file which will be used eventually in the

execute unit of your processor. The overall block will look similar to Figure 1, but definitely will not be
exactly like it. Your datapath should support all the instructions from the Baseline instruction set, although
you do not have to design the control for those instructions for this lab. You should also be thinking at
this point about what types of things you’d like to add to the instruction set. If you already have some
ideas, adding support in the data path now might save redesign later. The register file should contain 16
16-bit registers, and your ALU should be capable of performing 16-bit arithmetic The program counter
and immediate register for this lab will also be 16-bit registers. These will likely be implemented slightly
differently in the final circuit, so make sure that you can change things later.

Note that you can design this in pure Verilog, pure schematics, or a mix of the two. My choice would
be to design the major blocks as Verilog, but use schematics to connect them up. That way you can debug
things on your schematic (i.e. something that looks a littlelike Fig 1.53 for mips) instead of just staring
at code. But, pure code certainly works fine too. Even if you use Verilog remember that you should think
about the hardware first, and then write Verilog that describes that hardware. Think structurally in terms
of system decomposition.

Testing You should test your register file and ALU using the simulatorand be prepared to explain
your testing procedure, demonstrate the functionality of the circuits, and show the command files and
simulation logs from your own testing. Of course, if you can build in checks in the testbench it’s much
easier to see if things are still working when you make changes! If you have waveforms, make sure you
annotate them so we can tell what’s going on.

To meet the checkpoint you should have schematics, Verilog,etc. that defines your ALU and register
file, along with testbenches and output from the simulator toshow that it’s working. You should also
prepare a table that shows, for every instruction that you’re planning on implementing, how each of the
control points should be set. By control points I mean all themux settings, enable settings, etc that will
have to be generated by your controller in order for those instructions to work properly. It’s all right, of
course, if some of those control points are “don’t care.” This will help both you and us determine is you’ve
thought of all the possibilities that your datapath will have to support.

You can check off this checkpoint in an upcoming meeting between your group and the instructor and
TA.


