Notes: Expectation and Variance

CS 3130 / ECE 3530: Probability and Statistics for Engineers
October 3-5, 2017

Expectation:

The expectation of a discrete random variable X taking values $\left\{a_{i}\right\}$ with probability mass function p is given by

$$
\mathrm{E}[X]=\sum_{i} a_{i} P\left(X=a_{i}\right)=\sum_{i} a_{i} p\left(a_{i}\right) .
$$

The expectation is the value that you would expect on average if you repeat an experiment many times.
Example: What is the expectation of $X \sim \operatorname{Ber}(p)$?

$$
E[X]=\sum_{k=0}^{1} k p(k)=0 \cdot(1-p)+1 \cdot p=p
$$

Example: What is the expectation of $X \sim G e o(p)$?

$$
E[X]=\sum_{k=1}^{\infty} k p(k)=\sum_{k=1}^{\infty} k p(1-p)^{k-1}=\frac{1}{p}
$$

In-class Exercise: What is the expectation of a six-sided die roll?

$$
\mathrm{E}[X]=\frac{1}{6}(1+2+3+4+5+6)=3.5
$$

The expectation of a continuous random variable X with probability density function f is given by

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

Example: What is the expectation of $X \sim \operatorname{Exp}(\lambda)$?

$$
E[X]=\int_{0}^{\infty} x f(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda}
$$

Example: What is the expectation of $X \sim N\left(\mu, \sigma^{2}\right)$? (from book)

Linearity of expectation: If X and Y are random variables and $a, b \in \mathbb{R}$, then

$$
\mathrm{E}[a X+b Y]=a \mathrm{E}[X]+b \mathrm{E}[Y]
$$

Example: If we roll 10 dice and sum them up, what is the expected value of the result? Answer: Let X be one die, and S the sum of 10 dice. Then, $\mathrm{E}[S]=\mathrm{E}[10 \cdot X]=10 \cdot \mathrm{E}[X]=35$.

In-class Exercise: Remember that if $X \sim \operatorname{Bin}(n, p)$, then X is the sum of n Bernoulli random variables,

$$
\mathrm{E}[X]=\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]=n p
$$

Expectation of a function $g: \mathbb{R} \rightarrow \mathbb{R}$ of a random variable:
Discrete case:

$$
\mathrm{E}[g(X)]=\sum_{i} g\left(a_{i}\right) p\left(a_{i}\right)
$$

Continuous case:

$$
\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Variance:

The variance of a random variable X (continuous or discrete) is given by

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right] .
$$

The variance describes how "spread out" a random variable's distribution is. The standard deviation, defined as the square root of the variance, is often a more useful description of the spread (it's in the the same units as $\mathrm{E}[X]$).

Example: The variance of Bernoulli random variable, $X \sim \operatorname{Ber}(p)$:

$$
\operatorname{Var}(X)=\sum_{k=0}^{1} p(k)(k-\mathrm{E}[X])^{2}=(1-p)(0-p)^{2}+p(1-p)^{2}=(1-p) p^{2}+p(1-p)^{2}=p(1-p)
$$

Example: The variance of the normal distribution, $X \sim N\left(\mu, \sigma^{2}\right)$ (from book).

An equivalent formula for variance is

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2} .
$$

Variance after a scaling and shift, $a, b \in \mathbb{R}$:

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

In-class exercise: What is the variance of the six-sided die roll?

$$
\begin{gathered}
\operatorname{Var}(X)=\sum_{k=1}^{6} \frac{1}{6} k^{2}-\mathrm{E}[X]^{2}=\frac{1}{6}(1+4+9+16+25+36)-\left(\frac{7}{2}\right)^{2}=\frac{91}{6}-\frac{49}{4}=\frac{35}{12} \approx 2.92 \\
\text { Standard deviation }=\sqrt{\operatorname{Var}(X)} \approx 1.71
\end{gathered}
$$

