Notes: Bernoulli, Binomial, and Geometric Distributions

CS 3130/ECE 3530: Probability and Statistics for Engineers

September 19, 2017

Bernoulli distribution:

Defined by the following pmf:

$$
p_{X}(1)=p, \quad \text { and } \quad p_{X}(0)=1-p
$$

Don't let the p confuse you, it is a single number between 0 and 1 , not a probability function. If X is a random variable with this pmf, we say " X is a Bernoulli random variable with parameter p ", or we use the notation $X \sim \operatorname{Ber}(p)$. You can think of a Bernoulli trial as flipping a coin where the chance of heads is p and the chance of tails is $1-p$. Often we call 0 a "failure" and 1 a "success", so p is the probability of success.

Binomial distribution:

The binomial distribution describes the probabilities for repeated Bernoulli trials - such as flipping a coin ten times in a row. Each trial is assumed to be independent of the others (for example, flipping a coin once does not affect any of the outcomes for future flips). First, we need some definitions.

Remember the definition for factorial:

$$
n!=n \times(n-1) \times \cdots \times 2 \times 1
$$

This is the number of ways to put n objects into a specific order.
And the definition for " n choose k ":

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

This is the number of ways to select k objects out of a possible n, where the order does not matter.

The binomial distribution with parameters n and p is given by the pmf:

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

This is denoted $X \sim \operatorname{Bin}(n, p)$. This distribution is for repeated Bernoulli trials, and it gives the probability that you get k successes out of n trials.

Geometric distribution:

The geometric distribution is also for repeated Bernoulli trials, and it gives the probability that the first $k-1$ trials are failures, while the k th trial is the first success. Its pmf is

$$
p_{X}(k)=(1-p)^{k-1} p .
$$

This is denoted $X \sim \operatorname{Geo}(p)$.

In-class Problem: Remember the Monty Hall problem - if we switch doors, we have a $2 / 3$ chance of winning and $1 / 3$ chance to lose. If we play the game 4 times, what is the probability that we win exactly once? How about exactly $0,2,3$, or 4 times? What is the chance that we loose the first three times and finally win on the 4th try?

Key to variable names

It's important to keep straight what all the variables mean in the above equations. Here is a summary:
n : Number of trials
k : Number of successes in Binomial, OR first success that occurs in Geometric
p : Probability of success

