Notes: Discrete Random Variables

CS 3130/ECE 3530: Probability and Statistics for Engineers

September 14, 2017

Random Variables:

A **random variable** is a function from a sample space to the real numbers. The mathematical notation for a random variable X on a sample space Ω looks like this:

 $X:\Omega\to\mathbb{R}$

A random variable defines some *feature* of the sample space that is more interesting than the raw sample space outcomes.

Example: Sum of dice (see book) Sample space: $\Omega = \{(i, j) : i, j \in \{1, ..., 6\}\}$, Random variable: S(i, j) = i + j

Defining Events using Random Variables:

We can define events using random variables. The notation $\{X = a\}$ defines the event of all elements in our sample space for which the random variable X evaluates to a. In set notation

$$\{X = a\} = \{\omega \in \Omega : X(\omega) = a\}$$

The probability of this event is denoted P(X = a).

Example: Sum of dice What is $\{S = 5\}$? What is P(S = 5)? How about for $\{S = 7\}$?

<u>In-class Exercise</u>: Also for the two dice experiment, define the random variable $X(i, j) = i \times j$, i.e., X is the product of the two dice values. For a = 3, 4, 12, 14, what are the events $\{X = a\}$ and the probabilities P(X = a)?

Probability mass function:

The **probability mass function (pmf)** for a random variable X is a function $p : \mathbb{R} \to [0, 1]$ defined by p(a) = P(X = a). Notice this function is zero for values of a that are not possible outcomes. Sometimes we'll also call a pmf a **probability density function (pdf)** or just a **density**.

Probability Mass Function for the Sum of Two Dice

Cumulative distribution function:

The cumulative distribution function (cdf) for a random variable X is a function $F : \mathbb{R} \to [0, 1]$ defined by $F(a) = P(X \le a)$.

Cumulative Distribution Function for the Sum of Two Dice