Notes: Discrete Random Variables

CS 3130/ECE 3530: Probability and Statistics for Engineers

September 14, 2017

Random Variables:

A random variable is a function from a sample space to the real numbers. The mathematical notation for a random variable X on a sample space Ω looks like this:

$$
X: \Omega \rightarrow \mathbb{R}
$$

A random variable defines some feature of the sample space that is more interesting than the raw sample space outcomes.

Example: Sum of dice (see book)
Sample space: $\Omega=\{(i, j): i, j \in\{1, \ldots, 6\}\}$, Random variable: $S(i, j)=i+j$

Defining Events using Random Variables:

We can define events using random variables. The notation $\{X=a\}$ defines the event of all elements in our sample space for which the random variable X evaluates to a. In set notation

$$
\{X=a\}=\{\omega \in \Omega: X(\omega)=a\}
$$

The probability of this event is denoted $P(X=a)$.
Example: Sum of dice
What is $\{S=5\}$? What is $P(S=5)$? How about for $\{S=7\}$?
In-class Exercise: Also for the two dice experiment, define the random variable $X(i, j)=i \times j$, i.e., X is the product of the two dice values. For $a=3,4,12,14$, what are the events $\{X=a\}$ and the probabilities $P(X=a)$?

Probability mass function:

The probability mass function ($\mathbf{p m f}$) for a random variable X is a function $p: \mathbb{R} \rightarrow[0,1]$ defined by $p(a)=P(X=a)$. Notice this function is zero for values of a that are not possible outcomes. Sometimes we'll also call a pmf a probability density function (pdf) or just a density.

Probability Mass Function for the Sum of Two Dice

Cumulative distribution function:
The cumulative distribution function (cdf) for a random variable X is a function $F: \mathbb{R} \rightarrow[0,1]$ defined by $F(a)=P(X \leq a)$.

Cumulative Distribution Function for the Sum of Two Dice

