Notes: Total Probability

CS 3130 / ECE 3530: Probability and Statistics for Engineers
September 5, 2017

Total Probability

A set of events $B_{1}, B_{2}, \ldots, B_{n}$ is a partition of Ω if they are pairwise disjoint, that is, $B_{i} \cap B_{j}=\emptyset$ for any i, j, and if their union is equal to all of Ω, that is, $B_{1} \cup B_{2} \cup \ldots \cup B_{n}=\Omega$.

Given a partition $B_{1}, B_{2}, \ldots, B_{n}$ of Ω, the law of total probability states

$$
P(A)=P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+\ldots+P\left(A \mid B_{n}\right) P\left(B_{n}\right)
$$

A common application of this rule is for any event B, where we will have B, B^{c} forming a partition of Ω. Here the total probability is just two terms:

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

In-Class Problem: You have two urns, one with 4 black balls and 3 white balls, the other with 2 black balls and 2 white balls. You pick one urn at random and then select a ball from the urn. What is the probability the ball is white?

In-Class Problem: You have a system with a main power supply and auxillary power supply. The main power supply has a 10% chance of failure. If the main power supply is running, the auxillary power supply also has a 10% chance of failure. But if the main supply fails, the auxillary supply is more likely to be overloaded and has a 15% chance to fail. What is the probability that the auxillary power will fail?

Brain Teaser: The Monty Hall Problem

See Section 1.3 in book.

Also, here: http://en.wikipedia.org/wiki/Monty_Hall_problem

