Notes: Conditional Probability

CS 3130/ECE 3530: Probability and Statistics for Engineers
August 31, 2017

Review of "English translation" for events:

- $A \cap B=$ "both events A and B happen"
- $A \cup B=$ "either event A or B (or both) happens"
- $A^{c}=$ "event A does not happen"

Set Theory Rules: (try drawing Venn diagrams of these)

- Definition of set difference: $\quad A-B=A \cap B^{c} \quad$ "event A happens, but B does not"
- Associative Law:
- Commutative Law:

$$
\begin{aligned}
(A \cup B) \cup C & =A \cup(B \cup C) \\
(A \cap B) \cap C & =A \cap(B \cap C) \\
A \cup B & =B \cup A \\
A \cap B & =B \cap A
\end{aligned}
$$

- Distributive Law:

$$
\begin{aligned}
& (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
& (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{aligned}
$$

- DeMorgan's Law:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

Counting:

- Number of permutations of n items: $\quad n!=n \times(n-1) \times(n-2) \times \cdots \times 2$ (a.k.a. number of unique orderings)
- Number of ways to select k items out of n choices:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$ (here order does not matter, just which k items you select)

Probability Rules:

- Equally likely outcomes: $P(A)=\frac{|A|}{|\Omega|}$
- Inclusion-Exclusion Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Complement Rule: $P\left(A^{c}\right)=1-P(A)$
- Difference Rule: $P(A-B)=P(A)-P(A \cap B)$

Exercise: Try deriving these rules from the definition of a probability function. Draw a Venn diagram to convince yourself they work.

Conditional Probability:

$$
\begin{gathered}
P(A \mid B)=\text { "the probability of event } A \text { given that we know } B \text { happened" } \\
\text { Formula: } P(A \mid B)=P(A \cap B) / P(B)
\end{gathered}
$$

Multiplication Rule:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Tree diagrams to compute "two stage" probabilities ($B=$ first stage, $A=$ second stage):

1. First branch computes probability of first stage: $P(B)$
2. Second branch computes probability of second stage, given the first: $P(A \mid B)$
3. Multiply probabilities along a path to get final probabilities $P(A \cap B)$

Example: You are given two boxes with balls numbered $1-5$. One box contains balls 1, 3, 5, and the other contains balls 2 and 4 . You first pick a box at random, then pick a ball from that box at random. What is the probability that you pick a 2 ?

Sampling without replacement:

I have a box with 10 red balls and 10 green balls. I draw 2 balls from the box without replacing them. What is the probability that I get 2 red balls?

Let $R 1=$ "first ball red" and $R 2=$ "second ball red" and use product rule:

$$
P(R 1 \cap R 2)=P(R 1) P(R 2 \mid R 1)=\frac{1}{2} \times \frac{9}{19}=\frac{9}{38} \approx 0.24
$$

If I draw 3 balls without replacement, what is the probability that they are all red?

$$
\begin{aligned}
P(R 1 \cap R 2 \cap R 3) & =P(R 1 \cap R 2) P(R 3 \mid R 1 \cap R 2) & & \text { Multiplication rule for }(R 1 \cap R 2) \cap R 3 \\
& =P(R 1) P(R 2 \mid R 1) P(R 3 \mid R 1 \cap R 2) & & \text { Multiplication rule for } R 1 \cap R 2 \\
& =\frac{1}{2} \times \frac{9}{19} \times \frac{8}{18}=\frac{18}{171} \approx 0.11 & &
\end{aligned}
$$

In-Class Problem: Exercise 3.2a

