CS 3130 / ECE 3530: Probability and Statistics for Engineers

More Practice

1. You have 4 red socks and 2 blue socks in your drawer. If you pull two socks out at random, what is the probability that they match?
2. Let X be a random variable for an n-sided die. The possible values you can roll are $1,2,3, \ldots, n$, each with equal probability. The expected value of a die roll is $E[X]=9.5$. What is n ? Hint: The following formula will be helpful: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.
3. A Bernoulli random variable, $X \sim \operatorname{Ber}(\theta)$, has variance $\operatorname{Var}(X)=0.21$. What are the possible values for the probability θ ? Hint: There are two possible values θ could have.
4. The bus line that you take in to school claims that it is on average only 5 minutes late. Based on how many times you have been late to class, you think the bus is actually later than that. So you record the bus arrival times over 9 days. On average you find the bus is $\bar{x}_{9}=6$ minutes late, with a sample standard deviation of $s_{9}=1.5$ minutes. You now want to perform a hypothesis test on this data, to see if the bus really is later than their claim.
(a) What is the null hypothesis, H_{0}, and the alternate hypothesis, H_{1} ?
(b) What type of statistic would you compute to test this hypothesis? What is the value of it? (Hint: it's a simple number)
(c) Say you choose a significance level of $\alpha=0.05$. Below is a graph of the pdf for the sample statistic in part (b). Label it with the following information:
i. The critical value for this test comes out to either -2.26 or +2.26 . Pick the correct one, and mark it on the x-axis of the graph.
ii. Draw on the graph how the p-value would be computed from your test statistic in part (b). (Hint: I'm looking for you to shade an area of the graph.)

(d) Would you reject the null hypothesis? (Just answer yes or no.)
(e) Now, instead of a hypothesis test, compute a 99% confidence interval of the average. Let F denote the cdf for the appropriate Student's t distribution. You will need one of the following values:

$$
F(0.99)=0.826 \quad F(0.995)=0.827 \quad F^{-1}(0.99)=2.82 \quad F^{-1}(0.995)=3.25
$$

Hint: Your confidence interval should be symmetric about the sample mean, and you don't need to do the arithmetic to simplify the final answer.
5. Say you are given a random sample, $Z_{1}, Z_{2}, \ldots, Z_{n}$, where each random variable is defined as $Z_{i}=\frac{1}{2} X_{i}^{2}+\frac{1}{2} Y_{i}^{2}$, with both $X_{i} \sim N(\mu, 1)$ and $Y_{i} \sim N(\mu, 1)$.
(a) What is the expectation $E\left[X_{i}^{2}\right]$? Hint: Use the formula for variance of a random variable, and the fact that you know $E\left[X_{i}\right]$ and $\operatorname{Var}\left(X_{i}\right)$ because $X_{i} \sim N(\mu, 1)$.
(b) What is $E\left[Z_{i}\right]$? Hint: Use part (a), and the fact that $E\left[X_{i}^{2}\right]=E\left[Y_{i}^{2}\right]$.
(c) Say you want to estimate μ^{2} with the mean statistic: $\hat{\mu}^{2}=\bar{Z}_{n}$. What is the bias of this statistic? Hint: Use part (b), you should get a simple number.

