Applications of Finite Automata

Applications of finite automata include string matching algorithms, network protocols and lexical analyzers

String Processing

Consider finding all occurrences of a short string (pattern string) within a long string (text string).

This can be done by processing the text through a DFA: the DFA for all strings that end with the pattern string. Each time the accept state is reached, the current position in the text is output.

Example: Finding 1001

To find all occurrences of pattern 1001, construct the DFA for all strings ending in 1001.

Finite-State Machines

A finite-state machine is an FA together with actions on the arcs.

A trivial example for a communication link:

Example FSM: Bot Behavior

A bot is a computer-generated character in a video game.

Note that using finite-state machine allows automation.

Statecharts

Statecharts model tasks as a set of states and actions. They extend FA diagrams.

Here is a simplified statechart for a stopwatch.

Lexical Analysis

In compiling a program, the first step is lexical analysis. This isolates keywords, identifiers etc., while eliminating irrelevant symbols.

A token is a category, for example "identifier", "relation operator" or specific keyword.

For example,

token	$R E$
keyword then	then
variable name	$[a-z A-Z][a-z A-z 0-9] *$

where latter RE says it is any string of alphanumeric characters starting with a letter.

Lexical Analyzer

A lexical analyzer takes source code as a string, and outputs sequence of tokens.

For example,

$$
\begin{aligned}
& \text { for } i=1 \text { to max do } \\
& x[i]=0 ;
\end{aligned}
$$

might have token sequence
for id $\#$ num to id do id [id $]=$ num sep
As a token is identified, there may be an action. For example, when a number is identified, its value is calculated,

