
Properties of Regular Languages

There are severe limits to the recognition

problems that an FA can handle. But this

requires proof.



Closure Properties

A set is closed under an operation if applying

that operation to any members of the set always

yields a member of the set.

Fact. The set of regular languages is closed

under each Kleene operation.

That is, if L1 and L2 are regular languages, then

each of L1 ∪ L2, L1L2 and L1
∗ is regular.
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Proving Closure under Kleene

The easiest approach is to show that the REs for

L1 and L2 can be combined or adjusted to form

the RE for the combination language.

Example: The RE for L1L2 is obtained by writing

down the RE for L1 followed by the RE for L2.
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Closure under Complementation

Fact. The set of regular languages is closed

under complementation.

The complement of language L, written L, is all

strings not in L but with the same alphabet.

The statement says that if L is a regular lan-

guage, then so is L.

To see this fact, take deterministic FA for L

and interchange the accept and reject states.
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Closure under Intersection

Fact. The set of regular languages is closed

under intersection.

One approach: Use de Morgan’s law:

L1 ∩ L2 = (L1 ∪ L2)

and that regular languages are closed under union

and complementation.
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Product Construction for Intersection

Each state in the product is pair of states from

the original machines.

Formally, if L1 is accepted by DFA M1 with 5-

tuple (Q1, Σ, q1, T1, δ1) and L2 is accepted by DFA

M2 with 5-tuple (Q2, Σ, q2, T2, δ2). Then L1 ∩ L2 is

accepted by the DFA (Q1×Q2, Σ, (q1, q2), T1×T2, δ)

where δ((r, s),x) = (δ1(r,x), δ2(s,x)).
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Example: Even 0’s and 1’s

Suppose L1 is the binary strings with an even

number of 0’s, and L2 the binary strings with

an even number of 1’s. Then the FAs for these
languages both have two states:
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And so the FA for L1 ∩ L2 has four states:
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Product Construction for Even 0’s and 1’s
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A Nonregular Language: 0n1n

There is no FA for

B = {0n1n : n ≥ 0} = {ε,01,0011,000111, . . .}

Informal argument: Suppose input known to

be 0’s followed by 1’s. The FA has to count
the 0’s: that is, at end of 0’s it must be in state
unique to number of 0’s read. But FA has only
fixed finite memory, while there can be arbitrar-

ily many 0’s. Impossible.
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(In)Distinguishable Strings

Two strings x and y are indistinguishable with

respect to language L if for every string z, it

holds that xz ∈ L if and only if yz ∈ L. Otherwise

they are distinguishable.

Example: Say A is the language of binary strings

with odd number of 1’s. Then strings 0 and
10001 are indistinguishable with respect to A.
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Distinguishable Strings and States

Theorem. If M is DFA accepting language L,

and x and y are distinguishable strings with re-

spect to L, then M must be in a different state

after reading x than after reading y.

Suppose strings x and y put M in same state.

Then for any string z the strings xz and yz put

M in the same state. So either xz and yz are

both in L or both are out. Hence x and y are

indistinguishable.
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Sets of Distinguishable Strings

Corollary. If DL is set of pairwise distinguish-

able strings with respect to L, then any DFA for

L has at least |DL| states. In particular, if DL is

infinite then L is not regular.
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Example: 0n1n

Recall B = {0n1n : n ≥ 0}.

The set DB = {0j : j ≥ 0} is pairwise distinguish-

able. Well, take any two strings in DB: say 0
j

and 0j′ with j 6= j′. Appending 1j to the first

produces a string in B, but appending 1j to the

second produces a string not in B. That is, 0j

and 0j′ are distinguishable.

Since DB is infinite, B is not regular.
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Example: Lower Bound on Number of States

Consider the language of all binary strings with

an even number of both 0’s and 1’s. The set
{ε,0,1,01} is pairwise distinguishable. So the
product construction DFA we built has the fewest

states possible.

(In general, there is a connection between small-

est number of states of a DFA and the largest set

of pairwise distinguishable strings.)
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Practice

Define E as the language of all binary strings

with an equal number of 0’s and 1’s.

Show that E is not regular by finding an infinite

set of pairwise distinguishable strings.
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Solution to Practice

Let DE be the set of all strings containing only

0’s. Then for i 6= j the strings 0i and 0j are

distinguishable with respect to E, since 0i1i ∈ E

but 0i1j /∈ E.

The set DE is infinite, and so E is nonregular.
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The Pumping Lemma

The infamous Pumping Lemma says that ev-

ery regular language has a certain repetitive-

ness about it:

Pumping Lemma. Let A be a regular language

accepted by a DFA with k states. Then, for any

string z in A with at least k symbols, one can

find an early internal subsegment that can be

pumped. That is, z can be split as uvw where:

• v is nonempty,

• |uv| ≤ k, and

• uviw is in A for all i ≥ 0.
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Proof of Pumping Lemma

Follow the sequence of states around DFA for A

on input z. Let q be first of the k states to recur.

Then split the string z as follows:

p

q

r
u

v

w

It follows that the DFA is in same state r no mat-

ter whether it has read uw, uvw or uv2w. Hence,

uviw is in A for all i ≥ 0.
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Using the Pumping Lemma

The Pumping Lemma is used to show that a lan-

guage is nonregular, by showing that the lemma

is contradicted.

One needs to choose one string z that does not

pump.

Goddard 4: 19



Example: 0n1n

Consider again language B = {0n1n : n ≥ 0 }.

Suppose B were regular.

Then B would be accepted by DFA with k states.

Consider the specific string z = 0k1k. This is

in B.

Split z = uvw according to Pumping Lemma.

Then since |uv| ≤ k, it follows that v is composed

entirely of 0’s. But then uw is not in B (since has

fewer 0’s than 1’s).
This contradicts the Pumping Lemma.
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Example: Palindromes

A palindrome is a word that reads the same

backwards as it does forward (such as “level”).

Let P be the set of all palindromes for alphabet

{a,b}. P is nonregular.

Suppose P were regular. Then it would be ac-

cepted by DFA with say k states. Consider the

string z = akbak. Split z = uvw according to

Pumping Lemma. Then since |uv| ≤ k, it follows

that v is just a’s. Thus uw, is not in P , a contra-

diction of the Pumping Lemma.
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Practice

Define E as the language of all binary strings

with an equal number of 0’s and 1’s.

Show that E is not regular by showing that it

contradicts the Pumping Lemma.

Goddard 4: 22



Practice Solutions

Suppose E were regular. Then it would be ac-

cepted by a DFA with say k states.

Consider specific z = 0k1k. Split z = uvw ac-

cording to the Pumping Lemma. Then because

|uv| ≤ k, v is always just 0’s. Thus uw is not in E.

This contradicts the Pumping Lemma.
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Overview

A regular language is one which has an FA or an

RE. Regular languages are closed under union,

concatenation, star, and complementation. To

show that a language is nonregular, you can

show that there is an infinite set of pairwise dis-

tinguishable strings, or use the Pumping Lemma

and show that there is some string that cannot

be pumped.
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