1. Differences — \(a + bc \) versus \(\{a, bc\} \)
2. Garbage Machines
 - \(Q \subseteq \Sigma, \delta, \delta_0, T \)
 - Acceptance
 - JFLAP simulation
 - Motivations
 - Relationship to RE
 - Conversion to DFA
 - Examples

EX 1

\[
\begin{align*}
Q &= \{A, B, C, D\} \\
\Sigma &= \{0, 1\} \\
\delta_0 &= A \\
T &= \{0, 1\}
\end{align*}
\]

\[
\begin{array}{c|cccc}
\delta & 0 & 1 & \epsilon \\
\hline
A & \{A\} & \{AB\} & \emptyset \\
B & \{C\} & \{C\} & \emptyset \\
C & \{D\} & \{D\} & \emptyset \\
D & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

Acceptance

Any path labeled by the given string leading to some accept state
Motivations

- Makes it easier to specify nontrivial languages (Ex1, Ex4)
- Direct correspondence with RE

Conversion RE to NFA:

\[\emptyset \rightarrow O \]
\[\varepsilon \rightarrow O \]
\[a \rightarrow O \]
\[R_1 + R_2 \]
\[R_1 R_2 \]
Same initial state as before (if it were final, keep it final)

Why not simply?
Consider $L = \{ x \mid |x| \geq 1 \text{ and every even position of } x \text{ is a } 1 \text{ and } x \in \{0, 1\}^* \}$.

EX 2

\[
\begin{array}{ccc}
\rightarrow & 0, 1 & \rightarrow \\
\rightarrow & 0 \rightarrow & 0, 1 \\
\end{array}
\]

Build L^*.

NFA for

\[\{ x \mid x \in \{0, 1\}^* \text{ has odd 1's or even 0's} \} \]
Conversion to DFA
NFA with ε

EX3

\[A \xrightarrow{\varepsilon} B \xrightarrow{0,1} C \xrightarrow{0,1} D \xrightarrow{0,1} E \]

- δ table
- I-flop simulation
 - step by state
 - step with closure
- Conversion to DFA

Steps
1) DFA for \((0101)^*\)

![DFA Diagram]

2) NFA for all 0101 with a 1-bit error.

3) NFA for all 0101 with a 2-bit error.
As soon as you initialize A, you close into $A B$.
You do this whenever you land into A.

There is no A state without a B also occurring in the state (due to E closure).