CS 3100 – Models of Computation – Fall 2010

August 26, 2010

Notes 3, Handed out: August 31, 2010 during Lecture 3

• Work out solutios for Assignment 1

Concept / mathematical notation practice: Write these mathematically:

- Empty string
- Empty set write this in two different ways
- Write out the powerset of $\{a, b\}$
- How many elements are there in the powerset of $\{a, b, c, d\}$?
 - Each item is present or absent
 - Let 0000 represent "no elements are there" i.e. \emptyset
 - Let 0001 represent $\{d\}$
 - Let 1001 represent $\{a, d\}$
 - You get the idea now. Each subset of $\{a, b, c, d\}$ is represented by each four-bit bit vector.
 - How many such bit vectors are there? 0000, 0001, 0010, etc. all the way to 1111?

- Set containing empty string
- Set containing empty set
- Set containing an empty string and an empty set (now, why would you do that?!

This is strictly allowed, but a set usually has only items of the same type – either all sets or all strings.)

- String containing an empty set (Groan! Can you do this? No! Strings are not sets.)
- Union of set $\{a\}$ and itself
- The result of inserting a and b into $\{a\}$

Notions centered around languages

- A language is a set of strings
- Empty language : \emptyset
- The language containing the empty string : $\{\varepsilon\}$
- One is often interested in the beginning and ending patterns within strings. To specify this, one can split the string into two pieces that can be *concatenated* to form the whole.
- Concatenation of ab and cde is abcde
- Concatenation of ε and abd is abd
- Now I'm going to attempt to motivate the notion of *concatenation* of *languages*
- When one talks about "all possible former halves of strings" and "all possible latter halves of strings," one is talking about the *language* of the first halves and the language of the last halves
 - Example : telephone number = area-code followed by mainnumber

- area-code = (d d d)

- main-number = ddd-dddd
- One can then talk about the language of area codes and language of telephone numbers, i.e., L_{ac} and L_{telno} , and concat. these languages

Language concatenation

- If $L_1 = \{ab, b, varepsilon\}$ and $L_2 = \{b, dd, \varepsilon\}$ then L_1L_2 has all strings where the first string comes from L_1 and the second from L_2
- So what is $\{a, aa\}\{bb, b\}$?
- What is $\{\}\{\varepsilon\}$?
- What is $\{\}\{a, aa\}$?
- What is $\{a, aa\}$?
- What is $\{\varepsilon\}\{a,aa\}\{\varepsilon\}\{bb\}$?
- For $L = \{ab, b, \varepsilon\}$, we have $L^2 = \{ab, b, \varepsilon\}\{ab, b, \varepsilon\}$
- For the above L, we have $L^3 = \{ab, b, \varepsilon\}\{ab, b, \varepsilon\}\{ab, b, \varepsilon\}$
- For the above L, we have $L^0 = \{\varepsilon\}$ by definition (to allow the concat not to entirely disappear)!

Language union:

• What is $\{bb, cc\} \cup \{a, aa\}$?

Kleene star of a language

- $L^* = L^0 \cup L^1 \cup \dots$
- i.e. $L^* = \bigcup_{k \ge 0} L^k$
- This means $\emptyset^* = \{\varepsilon\}$

Regular expressions

- Shorthands for (regular) languages
- \emptyset is an RE denoting language \emptyset
- ε is an RE denoting language $\{\varepsilon\}$
- 0 is an RE denoting language $\{0\}$
- 1 is an RE denoting language $\{1\}$
- For R_1 and R_2 as REs, $R_1 + R_2$ is an RE denoting...
- For R_1 and R_2 as REs, R_1R_2 is an RE denoting...
- For R as an RE, (R) denotes...
- For R as an RE, R^* denotes...
- Do problem 2.1

Which of ε , *abba*, *bababb*, *baaaa* are in the language of $(a+b)^*ab(a+b)^*$?

• Short break

• Discuss Assignment 2, introducing solving similar problems.