CS 3100 - Models of Computation - Fall 2010

August 26, 2010

Notes 3, Handed out: August 31, 2010 during Lecture 3

- Work out solutios for Assignment 1

Concept / mathematical notation practice: Write these mathematically:

- Empty string
- Empty set - write this in two different ways
- Write out the powerset of $\{a, b\}$
- How many elements are there in the powerset of $\{a, b, c, d\}$?
- Each item is present or absent
- Let 0000 represent "no elements are there" i.e. \emptyset
- Let 0001 represent $\{d\}$
- Let 1001 represent $\{a, d\}$
- You get the idea now. Each subset of $\{a, b, c, d\}$ is represented by each four-bit bit vector.
- How many such bit vectors are there? 0000, 0001, 0010, etc. all the way to 1111 ?
- Set containining empty string
- Set containining empty set
- Set containining an empty string and an empty set (now, why would you do that?!
This is strictly allowed, but a set usually has only items of the same type - either all sets or all strings.)
- String containing an empty set (Groan! Can you do this? No! Strings are not sets.)
- Union of set $\{a\}$ and itself
- The result of inserting a and b into $\{a\}$

Notions centered around languages

- A language is a set of strings
- Empty language : \emptyset
- The language containing the empty string : $\{\varepsilon\}$
- One is often interested in the beginning and ending patterns within strings. To specify this, one can split the string into two pieces that can be concatenated to form the whole.
- Concatenation of $a b$ and $c d e$ is $a b c d e$
- Concatenation of ε and $a b d$ is $a b d$
- Now I'm going to attempt to motivate the notion of concatenation of languages
- When one talks about "all possible former halves of strings" and "all possible latter halves of strings," one is talking about the language of the first halves and the language of the last halves
- Example : telephone number $=$ area-code followed by mainnumber
- area-code $=(d \operatorname{d})$
- main-number = ddd-dddd
- One can then talk about the language of area codes and language of telephone numbers, i.e., $L_{a c}$ and $L_{\text {telno }}$, and concat. these languages

Language concatenation

- If $L_{1}=\{a b, b$, varepsilon $\}$ and $L_{2}=\{b, d d, \varepsilon\}$ then $L_{1} L_{2}$ has all strings where the first string comes from L_{1} and the second from L_{2}
- So what is $\{a, a a\}\{b b, b\}$?
- What is $\}\{\varepsilon\}$?
- What is $\}\{a, a a\}$?
- What is $\{a, a a\}\}$?
- What is $\{\varepsilon\}\{a, a a\}\{\varepsilon\}\{b b\}$?
- For $L=\{a b, b, \varepsilon\}$, we have $L^{2}=\{a b, b, \varepsilon\}\{a b, b, \varepsilon\}$
- For the above L, we have $L^{3}=\{a b, b, \varepsilon\}\{a b, b, \varepsilon\}\{a b, b, \varepsilon\}$
- For the above L, we have $L^{0}=\{\varepsilon\}$ by definition (to allow the concat not to entirely disappear)!

Language union:

- What is $\{b b, c c\} \cup\{a, a a\}$?

Kleene star of a language

- $L^{*}=L^{0} \cup L^{1} \cup \ldots$
- i.e. $L^{*}=\cup_{k \geq 0} L^{k}$
- This means $\emptyset^{*}=\{\varepsilon\}$

Regular expressions

- Shorthands for (regular) languages
- \emptyset is an RE denoting language \emptyset
- ε is an RE denoting language $\{\varepsilon\}$
- 0 is an RE denoting language $\{0\}$
- 1 is an RE denoting language $\{1\}$
- For R_{1} and R_{2} as REs, $R_{1}+R_{2}$ is an RE denoting...
- For R_{1} and R_{2} as REs, $R_{1} R_{2}$ is an RE denoting...
- For R as an RE, (R) denotes...
- For R as an RE, R^{*} denotes...
- Do problem 2.1

Which of $\varepsilon, a b b a, b a b a b b, b a a a a$ are in the language of $(a+b)^{*} a b(a+b)^{*} ?$

- Short break

- Discuss Assignment 2, introducing solving similar problems.

