UNID

Name:

CS 3100 – Final Exam (mock) – TOTAL 100 points PART-1 : CLOSED BOOK – 40 mins and 40 points 5 min break PART-2 : OPEN BOOK – 60 mins and 60 points

The multiple choice problems given here can earn you positive points (correct answer) or and negative points (incorrect). We show it as [+m/-n]. You must write a compact two-sentence (approx.) explanation in support of your answer, without which you won't gain any points. You must put a check mark ($\sqrt{}$) in one of the squares associated with each question.

PART-1 is similar to that of Midterm-2; just giving more practice below

- 1. [+5/-1] Choose from various answers below.
 - A. A DFA reads its input fully before accepting a string
 - B. A multi-tape TM is equivalent to a single tape TM
 - C. A DTM may accept a string without reading its input
 - D. The number of configurations of an LBA is fixed by its number of states Q
 - \Box All these assertions are true.
 - \Box Assertions A, B, and C are true.
 - \Box Assertion A and C alone are true.
 - \Box Assertions A and D are true.

Explanation:

- 2. [+5/-1] Choose from various answers below. The Schröder-Bernstein Theorem
 - A. helps establish a bijection between two sets A and B by finding two one-to-one onto functions $f: A \to B$ and $g: B \to A$.
 - B.... by finding two one-to-one into functions $f: A \to B$ and $g: B \to A$.
 - C. was used in class to show that the number of C programs is countably large.
 - D. is another way to present the Diagonalization proof.
 - \Box None of these assertions are true.
 - \Box Assertion A alone is true.
 - \Box All assertions except A are true.
 - $\Box\,$ Assertions B and C alone are true.

Explanation:

- 3. [+5/-1] Consider these assertions.
 - A. CFLs are closed under intersection.
 - B. RE languages are closed under intersection.
 - C. RE languages are closed under complementation.
 - D. Either a language L is RE or its complement \overline{L} is RE.
 - \Box All of these assertions are true.
 - \Box Assertion B alone is true.
 - $\hfill \Box$ All assertions except A are true.
 - \Box Assertions B and D alone are true.

Explanation:

- 4. [+5/-1] Consider the Pumping Lemma proofs discussed in this course; call them RPL and CPL for the regular and context-free Pumping lemmas. Recall that the main parts of these PLs are as follows: (i) in RPL, a string $uvw \in L \Rightarrow \forall i : uv^i w \in L$. (ii) in CPL, a string $uvwxy \in L \Rightarrow \forall i : uv^i wx^i y \in L$. Now consider the assertions.
 - A. In RPL, $v \neq \varepsilon$ because the language L is not empty
 - B. In CPL, $vx \neq \varepsilon$ because the grammar of L is assumed to be unambiguous
 - C. In RPL, $v \neq \varepsilon$ because the loop in the DFA has a length of at least 1

D. In CPL, $vx \neq \varepsilon$ because the grammar of L is assumed to be in the Chomsky Normal form.

- \Box Assertions A, B, and C are true
- \Box Assertions C and D are true
- \Box Assertion C alone is true
- \Box Assertions A, C, and D are true

Explanation:

PART-2 will be similar to that of Midterm-2