UNID

 Name:CS 3100 - Final Exam (mock) - TOTAL 100 points
PART-1 : CLOSED BOOK - 40 mins and 40 points
5 min break
PART-2 : OPEN BOOK - 60 mins and 60 points

The multiple choice problems given here can earn you positive points (correct answer) or and negative points (incorrect). We show it as $[+\mathbf{m} / \mathbf{- n}]$. You must write a compact two-sentence (approx.) explanation in support of your answer, without which you won't gain any points. You must put a check mark $(\sqrt{ })$ in one of the squares associated with each question.

PART-1 is similar to that of Midterm-2; just giving more practice below

1. $[+5 /-1]$ Choose from various answers below.
A. A DFA reads its input fully before accepting a string
B. A multi-tape TM is equivalent to a single tape TM
C. A DTM may accept a string without reading its input
D. The number of configurations of an LBA is fixed by its number of states QAll these assertions are true.Assertions A, B, and C are true.Assertion A and C alone are true.Assertions A and D are true.

Explanation:

2. $[+5 /-1]$ Choose from various answers below. The Schröder-Bernstein Theorem
A. helps establish a bijection between two sets A and B by finding two one-to-one onto functions $f: A \rightarrow B$ and $g: B \rightarrow A$.
B. ... by finding two one-to-one into functions $f: A \rightarrow B$ and $g: B \rightarrow A$.
C. was used in class to show that the number of C programs is countably large.
D. is another way to present the Diagonalization proof.None of these assertions are true.Assertion A alone is true.All assertions except A are true.Assertions B and C alone are true.

Explanation:

3. $[+5 /-1]$ Consider these assertions.
A. CFLs are closed under intersection.
B. RE languages are closed under intersection.
C. RE languages are closed under complementation.
D. Either a language L is RE or its complement \bar{L} is RE.All of these assertions are true.Assertion B alone is true.All assertions except A are true.Assertions B and D alone are true.

Explanation:

4. $[+5 /-1]$ Consider the Pumping Lemma proofs discussed in this course; call them RPL and CPL for the regular and context-free Pumping lemmas. Recall that the main parts of these PLs are as follows: (i) in RPL, a string $u v w \in L \Rightarrow \forall i: u v^{i} w \in L$. (ii) in CPL, a string $u v w x y \in L \Rightarrow \forall i: u v^{i} w x^{i} y \in L$. Now consider the assertions.
A. In RPL, $v \neq \varepsilon$ because the language L is not empty
B. In CPL, $v x \neq \varepsilon$ because the grammar of L is assumed to be unambiguous
C. In RPL, $v \neq \varepsilon$ because the loop in the DFA has a length of at least 1
D. In CPL, $v x \neq \varepsilon$ because the grammar of L is assumed to be in the Chomsky Normal form.Assertions A, B, and C are trueAssertions C and D are trueAssertion C alone is trueAssertions A, C, and D are true

Explanation:

PART-2 will be similar to that of Midterm-2

