
36 2 Mathematical Preliminaries

2.38. Repeat Exercise 2.37 for partial functions with signature Boolk

→ Bool. View each partial function as a table with the output field
being either a Boolean or the special symbol ⊥, standing for undefined.

3

Cardinalities and Diagonalization

In this chapter, we discuss the important idea of measuring sizes of
infinite sets. In addition to helping reinforce many mathematical con-
cepts, we obtain a better appreciation of the work of pioneers, notably
George Cantor, who originated many of the fundamental ideas in this
area. We will employ many of the ideas found in this chapter in later
chapters to argue the existence of non-computable functions and cer-
tain languages called non Turing-recognizable—languages for which the
membership test (testing whether an arbitrary string is a member of
the language)—cannot be performed by any machine.

3.1 Cardinality Basics

The cardinality of a set is its size. The cardinality of a finite set is
measured using natural numbers; for example, the size of {1, 4} is 2.
How do we “measure” the size of infinite sets? The answer is that we
use “funny numbers,” called cardinal numbers. The smallest cardinal
number is ℵ0, the next larger cardinal number is ℵ1, and so on. If one
infinite set has size ℵ0, while a second has size ℵ1, we will say that
the second is larger than the first, even though both sets are infinite.
Moreover, ℵ0 is the number of elements of Nat, while ℵ1 is the number
of elements of Real. All these ideas will be made clear in this section.

To understand that there could be “smaller” infinities and “bigger”
infinities, think of two infinitely sized dogs, Fifi and Howard. While Fifi
is infinitely sized, every finite patch of her skin has a finite amount of
hair. This means that if one tries to push apart the hair on Fifi’s back,
they will eventually find two adjacent hairs between which there is no
other hair. Howard is not only huge - every finite patch of his skin has
an infinite amount of hair! This means that if one tries to push apart

38 3 Cardinalities and Diagonalization

the hair on Howard’s back, they will never find two hairs that are truly
adjacent. In other words, there will be a hair between every pair of hairs!
This can happen if Fifi has ℵ0 amount of hair on her entire body while
Howard has ℵ1 amount of hair on his body.1 Real numbers are akin
to hair on Howard’s body; there is a real number that lies properly
between any two given real numbers. Natural numbers are akin to hair
on Fifi’s body; there is no natural number between adjacent natural
numbers.

We begin with the question of how one “counts” the number of el-
ements in an infinite set. For example, are there the same “number”
of natural numbers as there are real numbers? Since we cannot count
infinite sets, let us adopt a method that our ancestors sometimes used
when they could not count certain finite sets.2 Our ancestors used to
conduct trade successfully through the barter system without actually
counting the number of objects; say, a cabbage for an elephant, and
so on.3 The real idea behind barter is to establish a bijection or cor-
respondence between two sets of elements without actually counting
them. The same technique works quite well when we have to count the
contents of infinite sets; in fact, that is the only technique that works!
But what does ‘counting’, ‘countable’, etc., mean?

3.1.1 Countable sets

A set S is said to be countable if there is a 1-1 total mapping from it to
natural numbers. (This mapping need not be onto). Clearly, finite sets
are countable. Consider the infinite set Odd, the set of odd numbers.
Since there is a total 1-1 mapping λx.(x − 1)/2 from Odd numbers to
Nat, Odd is countable. The set Real is not countable, as we shall show
in this chapter.

3.1.2 Cardinal numbers

We now discuss the use of cardinal numbers more precisely. The cardi-
nality of Nat is defined to be ℵ0, written |Nat| = ℵ0. Two sets A and B
have the same cardinality if there is a bijection from A to B. Function
λx.(x − 1)/2 actually serves as a bijection from Odd numbers to Nat.
To sum up,

1 Hope this wouldn’t be viewed as splitting hairs. . .
2 It is good that Romans didn’t discover the concept of Avogadro’s number - how

could they have carved it out on stone tablets?
3 Cabbages with magical powers, perhaps.

3.2 The Diagonalization Method 39

• Odd is countable,
• |Odd| = |Even| = |Nat| = ℵ0,
• But, note that Odd ⊂ Nat and Even ⊂ Nat;
• Therefore, it is entirely possible that for two sets A and B, A ⊂ B,

and yet |A| = |B|.
The above example demonstrates that one cannot determine the car-
dinality of sets purely based on subset relationships. One correct (and
handy) method for using subset relationships to determine the cardi-
nality of sets is using cardinality traps.

3.1.3 Cardinality “trap”

To motivate the notion of cardinality trap, consider the question, “how
many points are there in the map of mainland USA?” Let us treat this
map as a region of Real×Real. The theorem which we call cardinality
trap says:

If, for three sets A, B, and C, we have |A| = |C| and A ⊂ B ⊂ C,
then |A| = |B| = |C|.

Specifically, cardinality trap allows one to “trap” the cardinality of a
set B to be between those of two sets A and C. Exercise 3.12 asks
you to prove that cardinality trap is a simple corollary of the famous
Schröder-Bernstein theorem. For the question at hand,

• Any given map of the USA (set B of points) can be properly in-
scribed within a (larger) square (set C of points).

• Within the given map of the USA, one can properly inscribe a
(smaller) square (set A of points).

• All squares in Real×Real have the same number of points, ℵ1 (this
is a result we shall prove later (|A| = |C|).

• Therefore, |A| = |B| = |C|, or the map of the USA, however drawn,
has the same number of points as in a square, namely ℵ1.

Now, we present one of George Cantor’s central results, which allows us
to prove that two sets have different cardinalities. Known as the diago-
nalization method, it is basically a specific application of the principle
of proof by contradiction.

3.2 The Diagonalization Method

Let us return to our original question, “is there a bijection from Nat
to Real?” The answer is no and we proceed to show how. We follow

40 3 Cardinalities and Diagonalization

the powerful approach, developed by Cantor, called diagonalization.
Diagonalization is a particular application of the principle of proof by
contradiction or reductio ad absurdum in which the solution-space is
portrayed as a square matrix, and the contradiction is observed along
the diagonal of this matrix. We now walk you through the proof, pro-
viding section headings to the specific steps to be performed along the
way.

Most textbooks prove this result using numbers represented in dec-
imal, which is much easier than what we are going to present in this
section - namely, prove it in binary. We leave the proof in decimal as an
exercise for you. In addition to being a ‘fresh,’ as well as illuminating
proof, a proof for the binary case also allows us to easily relate cardi-
nality of Reals to that of languages over some alphabet. Here, then,
are the steps in this proof.

3.2.1 Simplify the set in question

We first simplify our problem as follows. Note that (λx.1/(1 + x)) is
a bijection from [0,∞] ⊂ Real to [0, 1] ⊂ Real. Given this, it suffices
to show that there is no bijection from Nat to [0, 1] ⊂ Real, since
bijections are closed under composition. We do this because the interval
[0, 1] is “easier to work with.” We can use binary fractions to capture
each number in this range, and this will make our proof convenient to
present.

3.2.2 Avoid dual representations for numbers

The next difficulty we face is that certain numbers have two fractional
representations. As a simple example, if the manufacturer of Ivory soap
claims that their soap is 99.99% pure, it is not the same as saying it is
99.999% pure.4 However, if they claim it is 99.99% pure (meaning an in-
finite number of 9s following the fractional point), then it is equivalent
to saying it is 100% pure. Therefore, in the decimal system, infinitely
repeating 9s can be represented without infinitely repeating 9s. As an-
other example, 5.1239 = 5.124. The same ‘dual representations’ exist in
the binary system also. For example, in the binary system, the fraction
0.0100 (meaning, 0.010 followed by an infinite number of 0s) represents
0.25 in decimal. However, the fraction 0.0101 (0.010 followed by an in-
finite number of 1s) represents 0.0110 in binary, or 0.375 in decimal.
Since we would like to avoid dual representations, we will avoid dealing

4 Such Ivory soap may still float.

3.2 The Diagonalization Method 41

with number 1.0 (which has the dual representation of 0.1). Hence, we
will perform our proof by showing that there is no bijection from Nat
to [0, 1) ⊂ Real. This would be an even stronger result.

Let us represent each real number in the set [0, 1) ⊂ Real in binary.
For example, 0.5 would be 0.100 . . ., 0.375 would be 0.01100 We
shall continue to adhere to our convention that we shall never use any
bit-representation involving 1. Fortunately, every number in [0, 1) can
be represented without ever using 1. (This, again, is the reason for
leaving out 1.0, as we don’t wish to represent it as 0.1, or 1.0).

3.2.3 Claiming a bijection, and refuting it

For the simplicity of exposition, we first present a proof that is “nearly
right,” and much simpler than the actual proof. In the next section, we
repair this proof, giving us the actual proof. Suppose there is a bijection
f that puts Nat and [0, 1) in correspondence C1 as follows:

0 → .b00b01b02b03 . . .
1 → .b10b11b12b13 . . .
. . .
n → .bn0bn1bn2bn3 . . .
. . .

where each bij is 0 or 1.
Now, consider the real number

D = 0.¬b00 ¬b11 ¬b22 ¬b33

This number is not in the above listing, because it differs from the i-
th number in bit-position bii for every i. Since this number D is not
represented, f cannot be a bijection as claimed. Hence such an f does
not exist.

3.2.4 ‘Fixing’ the proof a little bit

Actually the above proof needs a small “fix”; what if the complement
of the diagonal happens to involve a 1? The danger then is that we
cannot claim that a number equal to the complemented diagonal does
not appear in our listing. It might then end up existing in our listing
of Reals in a “non 1 form.”

We overcome this problem through a simple correction.5 This cor-
rection ensures that the complemented diagonal will never contain a

5 Exercise 3.6 asks you to propose an alternative correction.

42 3 Cardinalities and Diagonalization

1. In fact, we arrange things so that the complemented diagonal will
contain zeros infinitely often. This is achieved by placing a 1 in the un-
complemented diagonal every so often; we choose to do so for all even
positions, by listing the Real number .12n+10 . . . (2n+1 1s followed by
0) at position 2n, for all n. Consider the following correspondence, for
example:

0 → .10
1 → .c00c01c02c03 . . .
2 → .1110
3 → .c10c11c12c13 . . .
4 → .111110
5 → .c20c21c22c23 . . .
6 → .11111110
. . .
2n → .12n+10 . . .
2n + 1 → .cn0cn1cn2cn3 . . .
. . .

Call this correspondence C2. We obtain C2 as follows. We know that the
numbers .10, .1110, .111110, etc., exist in the original correspondence
C1. C2 is obtained from C1 by first permuting it so that the above
elements are moved to the even positions within C2 (they may exist
arbitrarily scattered or grouped, within C1). We then go through C1,
strike out the above-listed elements, and list its remaining elements in
the odd positions within C2. We represent C2 using rows of .cij , as
above.

We can now finish our argument as follows. The complemented diag-
onal doesn’t contain a 1, because it contains 0 occurring in it infinitely
often. Now, this complemented diagonal cannot exist anywhere in our
.cij listing. The complemented diagonal is certainly a Real number
missed by the original correspondence C1 (and hence, also missed by
C2). Hence, we arrive at a contradiction that we have a correspondence,
and therefore, we cannot assign the same cardinal number to the set
[0, 1) ⊆ Real. It is therefore of higher cardinality.

The conclusion we draw from the above proof is that Real and Nat
have different cardinalities. Are there any cardinalities “in between”
that of Real and Nat? Loosely speaking, “is there a ℵ0.5?!” The hy-
pothesis that states “no there isn’t a cardinality between ℵ0 and ℵ1,” or
in other words, “there isn’t a ℵ0.5,” is known as the Continuum Hypoth-
esis. It has been a problem of intense study over the last 120 years, and
in fact is the first of Hilbert’s 23 challenges to computer science [54].

3.3 The Schröder-Bernstein Theorem 43

These challenges helped spur considerable amounts of research in Com-
puter Science, and contributed to much of the foundational knowledge
of the subject area (e.g., as covered in this book). For further details,
please see [26]. We shall use cardinality arguments when comparing the
set of all functions and the set of all computable functions.

3.2.5 Cardinality of 2Nat and Nat → Bool

In this section, we argue that the sets 2Nat (the powerset of Nat) and
Nat → Bool (the set of functions from Nat to Bool) have the same
cardinality as Real. Notice that each set within 2Nat can be represented
by an infinitely long characteristic sequence. For instance, the sequence
10010100 represents the set {0, 3, 5}; the sequence 101010 . . . represents
the set Even; the sequence 010101 . . . represents the set Odd; and so
on. Notice that the very same characteristic sequences also represent
functions from Nat to Bool. For instance, the sequence 10010100 rep-
resents the function that maps 0, 3, and 5 to true, and the rest of Nat
to false; the sequence 101010 . . . represents the function λx.even(x);
and the sequence 010101 . . . represents the function λx.odd(x). Hence,
the above two sets have the same cardinality as the set of all infinitely
long bit-sequences. How many such sequences are there? By putting a
“0.” before each such sequence, it appears that we can define the Reals
in the range [0, 1]. However, we face the difficulty caused by infinite
1s, i.e., we will end up having 1 occurring within an infinite number of
infinite sequences. Therefore, we cannot directly use the arguments in
Section 3.2.2, which rely on such numbers being absent from the listing
under consideration.

We now present the Schröder-Bernstein Theorem which allows us to
handle this, and other “hard-to-count” sets, very cleanly. We present
the theorem and its applications in the next section.

3.3 The Schröder-Bernstein Theorem

Theorem 3.1. (Schröder-Bernstein Theorem): For any two sets A and
B, if there is a 1-1, total, and into map f going from A to B, and
another 1-1, total, and into map g going from B to A, then these sets
have the same cardinality.

Section 3.3.3 discusses a proof of this theorem.

44 3 Cardinalities and Diagonalization

3.3.1 Application: cardinality of all C Programs

As our first application of the Schröder-Bernstein Theorem, let us arrive
at the cardinality of the set of all C programs, CP . We show that this
is ℵ0 by finding 1-1, total, and into maps from Nat to CP and vice
versa. The real beauty of this theorem is that we can find such maps
completely arbitrary. For instance, we consider the class of C programs
beginning with main(){}. This is, believe it or not, a legal C program!
The next longer, such “weird but legal” C program, is main(){;}. The
next ones are main(){;;}, main(){;;;}, main(){;;;;}, and so on!
Now,

• A function f : Nat → CP that is 1-1, total, and into is the following:
− Map 0 into the legal C program, main(){}
− Map 1 into another legal C program main(){;}
− Map 2 into another legal C program main(){;;}
− . . ., map i into the C program main(){;i}—i.e., one that con-

tains i occurrences of ;.
• A function g : CP → Nat that is 1-1, total, and into is the following:

view each C program as a string of bits, and obtain the value of
this bit-stream viewed as an unsigned binary number.

By virtue of the existence of the above functions f and g, from the
Schröder-Bernstein Theorem, it follows that |CP | = |Nat|.

3.3.2 Application: functions in Nat → Bool

We have already shown that such functions can be viewed as infinite
bit-sequences, IBS. As already pointed out, we cannot interpret such
sequences straightforwardly as Real numbers in [0, 1) because of the
presence of 1 that gives rise to multiple representations. We use the
following alternative approach:

• We map every member of IBS that does not contain an occurrence
of 1 into the range [0, 1) by putting a “0.” before it, and interpreting
it as a Real number.

• We map every member of IBS that contains an occurrence of 1
into the range [1, 2] by putting a “1.” before it, interpreting it as
a Real number in [1, 2], and converting it into an equivalent form
without 1. For example, 0.010101 is mapped to 1.010110.

• This is a 1-1, total, and into map from IBS to [0, 2]. Composing this
map with the scale-factor λx.(x/2), we obtain the desired function
f that goes from IBS into [0, 1].

3.3 The Schröder-Bernstein Theorem 45

• Now, we obtain function g that is 1-1, total, and into, going from
[0, 1] to IBS as follows:
• map every number except 1 in this range to the corresponding

number in IBS (with a “0.” before it) that does not contain 1.
• map 1 to 0.1.

This mapping hits every member of IBS except those containing 1
(the only exception being for 1). This is 1-1, total, and into.

From the Schröder-Bernstein Theorem, it follows that |IBS| = |Real|.

Illustration 3.3.1 Using the Schröder-Bernstein Theorem, define a
bijection between Nat × Int and Int.
Solution: Using the SB theorem, we just need to find a 1-1 total into
maps going from Nat×Int to Int and one going from Int to Nat×Int.
Here is the first map:

λ〈x, y〉.sign(y) × (2x × 3|y|).

That this map is total is obvious because × is defined everywhere.
Why is this 1-1? That’s because of the unique prime decomposition of
any number (note that we are not ignoring the sign). It is into because
we can’t generate numbers that are a multiple of 5, 7, etc.

The reverse map is much easier: just pair the Int with some arbitrary
Nat:

λx.〈0, x〉.

How about finding a bijection directly? It can be done as follows
(but it will become apparent how much harder this is, compared to
using the Schröder-Bernstein Theorem):

List all 〈Nat, Int〉 pairs systematically, then list all Ints sys-
tematically against it.

Listing all of the former proceeds systematically as follows:

• All that “add up to 0 ignoring signs,” with signs later attached
in every possible way. 〈0, 0〉 is the only pair that adds up to 0.
Additionally, −0 is 0.
• All that “add up to 1 ignoring signs,” with signs later attached
in every possible way. 〈0, 1〉 and 〈1, 0〉 add up to 1. List them as
follows:

〈0, 1〉, 〈0,−1〉, 〈1, 0〉.
• All that “add up to 2 ignoring signs,” with signs later attached in
every possible way. 〈0, 2〉, 〈1, 1〉, and 〈2, 0〉 add up to 2. List them
as follows:

174 10 Operations on Regular Machinery

10.3.3 Minimizing DFA

The most important result with regard to DFA minimization is the
Myhill-Nerode Theorem.

Theorem 10.1. The result of minimizing DFAs is unique, up to iso-
morphism.1

The theorem says that given two DFAs over the same alphabet that are
language-equivalent, they will result in identical DFAs when minimized,
up to the renaming of states. One very dramatic illustration of the
Myhill-Nerode Theorem will be in Chapter 13, where it will be shown
that Binary Decision Diagrams (BDDs)—an efficient data structure for
Boolean functions—are minimized DFAs for certain finite languages of
binary strings. These finite strings, in fact, encode the truth assign-
ment for Boolean formulas according to certain conventions that will
be explained in Chapter 13. Because of this uniqueness, equality test-
ing between two Boolean functions can be reduced to pointer-equality
in a representation of BDDs using hash tables. Another illustration is
provided in Section 10.4. We now discuss the minimization algorithm
itself.

The basic idea behind DFA state minimization is to consider all
pairs of states systematically by constructing a table. For each pair of
states, we consider all strings of length zero and up, and see if they can
distinguish any pair of states. Initially, we distinguish all pairs of states
〈p, q〉 such that p is a final state and q is nonfinal. We enter an x in the
table to record that these states are ε-distinguishable. In essence, at the
beginning of the algorithm we are treating all final states as belonging
to one equivalence class, and all non-final states as belonging to another.

Thereafter, in the ith iteration of table filling, we see if any of the
state pairs 〈p, q〉 that are not yet distinguished have a move on some
a ∈ Σ such that they go to states 〈p′

, q
′〉 that are distinguishable (at

the end of the i− 1st iteration); if so, distinguish 〈p, q〉. The algorithm
stops when two iterations k and k + 1 result in the same table.
Illustration: Consider the DFA in Figure 10.11 (from [71]) where the
final states are 2, 3, 6, and Σ = {a, b}.

1. The initial blank table that permits all pairs of states to be com-
pared is in Figure 10.11.

1 The concept of isomorphism comes from graph theory. Two directed graphs G1

and G2 are isomorphic if there is a bijection b between their nodes that preserves
the graph connectivity structure. In other words, if n1 and n2 are nodes of G1 and
G2, respectively, and if the bijection relates n1 and n2, then the list of successors
of n1 in G1 are also bijective with the list of successors of n2 in G2.

10.3 More Conversions 175

3

4b

5

a1 b

2a

6
a

b

a
b

a
b

b
a

2 .
3 . .
4 . . .

5
6
1 2 3 4 5

2 x 2 x 2 x 2 x
3 x . 3 x . 3 x . 3 x .
4 . x x 4 . x x 4 x x x 4 x x x
5 . x x . 5 . x x . 5 x x x . 5 x x x .

6 x . . x x 6 x x x x x 6 x x x x x 6 x x x x x
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0-dist 1-dist 2-dist 3-dist? No change!
So, done.

4
a

b

1 2a
b

3a
b

a
b

Fig. 10.11. (i) Example for DFA minimization, (ii) initial table for DFA
minimization, (iii) steps in DFA minimization, and (iv) the final minimized
DFA

176 10 Operations on Regular Machinery

2. All 0-length string distinguishable states are all pairs of states that
consist of exactly one accept state (see below). All subsequent steps
identifying i-distinguishable states for all i are also in Figure 10.11.

3. Let us understand how one x was added. In Figure 10.11, we put an
x (to distinguish between) states 2 and 6. Why is this so? This is
because 2 has a move upon input a to state 4, while state 6 moves
upon a to state 6 itself. From the 0-dist table, we know that states
4 and 6 are distinguishable: one being a final and the other being
a nonfinal state.

4. At the 3-dist step, there was no change from the previous ta-
ble (in other words, a fixed-point has been reached, as described in
Chapter 6). At this point, state pairs 3,2 and 5,4 still have a ‘.’
connecting them (they could not be distinguished). Therefore, we
merge these states, resulting in the minimized DFA of Figure 10.11.

10.4 Error-correcting DFAs

Consider another experiment that shows the value of tool-assisted de-
bugging of machines. In this experiment, a DFA has to be designed to
recognize all strings that are a Hamming distance of 2 away from the
set of strings denoted by the regular expression (0101)+. For instance,
010101 and 010110 are a Hamming distance of 2 apart, as are 010111
and 000110.

Definition 10.2. (Hamming Distance) Given two strings V1 and V2, of
equal length and over {0, 1}∗, they are a Hamming distance of d apart
if they differ in exactly d positions.

The DFA we are to design can be regarded as an error-correcting DFA
which corrects two-bit errors. We shall derive this DFA using two dis-
tinct approaches, each time by following two different lines of logic:

1. The first approach will be to develop a cyclic DFA that performs
transitions between states I, A, B, C, F, and back to A upon seeing
01010. However, upon seeing any erroneous symbol—for instance,
seeing a 1 in state I, it goes to a cycle at a lower “stratum” labeled
with states A1, B1, etc. This is presented in Figure 10.12.

2. Another approach will be to write a regular expression that cap-
tures all possible zero-bit errors, all possible one-bit errors, and all
possible two-bit errors.

We shall find the minimal DFAs corresponding to these constructions. If
correctly performed, we must obtain isomorphic minimal DFAs, again

10.4 Error-correcting DFAs 177

serving to verify our construction methods. We discuss these construc-
tions in the following sections.

10.4.1 DFA constructed using error strata

I - 0 -> A

I - 1 -> A1

A - 1 -> B A1 - 1 -> B1 A2 - 0 -> BH

A - 0 -> B1 A1 - 0 -> B2 A2 - 1 -> B2
B - 0 -> C B1 - 0 -> C1 B2 - 0 -> C2
B - 1 -> C1 B1 - 1 -> C2 B2 - 1 -> BH

C - 1 -> F C1 - 1 -> F1 C2 - 1 -> F2
C - 0 -> F1 C1 - 0 -> F2 C2 - 0 -> BH
F - 0 -> A F1 - 0 -> A1 F2 - 0 -> A2
F - 1 -> A1 F1 - 1 -> A2 F2 - 1 -> BH BH - 0,1 -> BH

Fig. 10.12. A DFA that has two error strata implementing all strings that
are a Hamming distance of 2 away from the language (0101)+

The DFA corresponding to the use of error-correcting strata is cap-
tured in Figure 10.12. By running the command perl fa2grail.perl
h2 > h2fa,2 we convert this ASCII input into a grail representation.
Following that, we apply the command

cat h2fa | fmdeterm | fmmin | perl grail2ps.perl - > h2fa.ps

The result is shown in Figure 10.13 on the left-hand side.

10.4.2 DFA constructed through regular expressions

A regular expression that captures all possible zero, one, and two-bit
errors is in Figure 10.14. We have added spaces and newlines, as well as
comments beginning with “--” to enhance the readability of the above
RE. We then perform the command sequence:

cat h2re | retofm | fmdeterm | fmmin | perl grail2ps.perl - > h2fa1.ps

The result is shown in Figure 10.13 on the right-hand side. Contrasting
it with the other DFA in this figure, we can see that barring node
numberings as well as the layout (under the control of the ‘dot’ drawing
package), these DFAs are isomorphic.
2 We present this file in an intuitively layered manner; before running the script,

one must present all the entries to occupy one column.

178 10 Operations on Regular Machinery

8

10

1

11

0

0

1

0

4

1

3

0

2

0

5

1

1

0

1

0

7

1

6

1

12

0

0

9

1

0 1

1

0

1

0

10

6

1

11

0

0

5

0

1

1

2

0

1

3

0

4

1

1

0

0

8

1

10

7

1

12

0

0

9

1

1

0

0

1

Fig. 10.13. Minimal DFAs for the same language are isomorphic

10.5 Ultimate Periodicity and DFAs 179

((0101)*) -- Embedding head sequence

(0101 -- 0-bit error option

+ 1101+0001+0111+0100 -- 1-bit error option

+
(1101+0001+0111+0100) -- One possibility for a

((0101)*) -- 2-bit error as two one-
(1101+0001+0111+0100) -- bit errors with a

-- correct mid-sequence

+

1001+1111+1100+0011+0000+0110 -- Another possibility for

-- a 2-bit error as two
) -- erroneous bits within

-- a block of four bits

((0101)*) -- Embedding tail sequence

Fig. 10.14. A regular expression for all 0-, 1-, and 2-bit errors

10.5 Ultimate Periodicity and DFAs

Ultimate periodicity is a property that captures a central property
of regular sets (recall the definition of ultimate periodicity given in
Definition 5.1, page 76).

Theorem 10.3. If L is a regular language over an alphabet Σ, then
the set Len = {length(w) | w ∈ L} is ultimately periodic.

Note: The converse is not true. For example, the language
{0n1n | n ≥ 0} has strings whose lengths are ultimately periodic, and
yet this language is not regular.

A good way to see that Theorem 10.3 is true is as follows. Given any
DFA D over some alphabet Σ, consider the NFA N obtained from D
by first replacing every transition labeled by a symbol in Σ \ {a} by a.
In other words, we are applying a homomorphism that replaces every
symbol of the DFA by a. Hence, the resulting machine is bound to be
an NFA, and the lengths of strings in its language will be the same as
those of the strings in the language of the original DFA (in other words,
what we have described is a length-preserving homomorphism). Now,
if we convert this NFA to a DFA, we will get a machine that starts out
in a start state and proceeds for some number (≥ 0) of steps before it
“coils” into itself. In other words, it attains a lasso shape. It cannot

180 10 Operations on Regular Machinery

have any other shape than the ‘coil’ (why?). This coiled DFA shows
that the length of strings in the language of any DFA is ultimately
periodic with the period defined by the size of the coil.

We now take an extended example to illustrate these ideas. Consider
the DFA built over Σ = {a, b, c, d, f} using the following command
pipeline:

echo ’(ad)*+((abc)((acf)*+(da)*)d)’ | retofm | fmdeterm

| fmmin | grail2ps.perl - | gv -

8 5a

3d

7b

2a
d

9c

d

6

a 1

c

4a 0d

f

The DFA generated by converting every symbol to a and deter-
minizing the result is as follows.

echo ’(aa)*+((aaa)((aaa)*+(aa)*)a)’ | retofm | fmdeterm
| fmmin | grail2ps.perl - | gv -

0 1a 7a

6

a

5

a

3a 4a

2a

a

The length of strings in the language of this DFA is ultimately
periodic, with the values of the constants n = 2 and p = 6 as per
the definition of UP appearing in Section 5.2.1. Based on all these
observations, we can state another theorem:

Theorem 10.4. A language over a singleton alphabet is regular if and
only if the length of strings in this language is ultimately periodic.

Chapter Summary

This chapter covered quite a bit of important ground in terms of con-
versions between machine types. It also illustrated two very fascinating
topics assisted by the grail tools. The first is that minimal DFAs for
the same language are isomorphic. The second is that DFAs with infi-
nite languages over a singleton alphabet always have a “lasso” shape to
them, and accepting states are sprinkled along the lasso. This has the

10.5 Ultimate Periodicity and DFAs 181

effect of making the string lengths of strings in this language ultimately
periodic.

Exercises

10.1. Suppose an alternate definition of δD is offered:

δD(S, a) = {y | ∃s ∈ S : y ∈ Eclosure(δ(s, a))}.

Does it change the behavior of the resulting DFA? Justify your answer.
Why do we perform Eclosure before and after δ in case of the NFA,
on page 161?

10.2. Convert the NFA in Exercise 9.4 into an equivalent DFA, showing
all the steps.

10.3. Convert the NFA of Figure 9.2 to a DFA for k = 2 and k = 5.
Repeat for the modified NFA in Figure 9.3.

10.4. The token game of an NFA can be succinctly stated as follows:
an NFA accepts a string x if there exists a path labeled by z from the
start state to some final state, and x is z projected onto the alphabet
Σ. Consider a variant of an NFA called all-paths NFA. In an all-paths
NFA, a string x is accepted if and only if all such z paths that are
in the machine actually lead to some final state. Formally define the
all-paths NFA as a five-tuple mathematical structure, and prove that
its language is regular, by converting it to an equivalent DFA.

10.5. What are the languages of the machines in Figure 10.2 and Fig-
ure 10.3?

10.6. Argue that Ladd is regular, where

Ladd = {a0b0c0a1b1c1 . . . ak−1bk−1ck−1 | k > 0 ∧ AddOK}

where AddOK = (ak−1 . . . a0) + (bk−1 . . . b0) = (ck−1 . . . c0). In other
words, the addition of the unsigned binary words (ak−1 . . . a0) and
(bk−1 . . . b0) yields (ck−1 . . . c0), where ak−1 is the MSB and a0 the LSB
(and likewise for b and c).

10.7.
Let Σ = {0, 1} and let D be a DFA over Σ. Obtain an NFA N for the
language of strings that are the first third of all the strings accepted
by D (the “first-third” language). Formally,

Lx−− = {x | x ∈ Σ∗ ∧ ∃y, z ∈ Σ∗ : |x| = |y| = |z| ∧ xyz ∈ L(D)}

182 10 Operations on Regular Machinery

10.8. Repeat Exercise 10.7 for the middle-third language.

10.9. Call the DFA in Figure 8.5 D. Obtain the complement DFA D by
the complementation algorithm. Then obtain a DFA corresponding to
the union of D and D. Repeat for the intersection of D and D. Check
that you are indeed obtaining the right answers.

10.10. Give an example of an NFA on which performing complemen-
tation, as with DFAs, (exchanging final and nonfinal states) is correct,
and another example where it is incorrect. This shows that exchanging
final and non-final states does not complement NFAs!

10.11. Section 10.2.5 describes a construction for star. Describe an
alternate construction for star that results in an NFA with exactly one
final state.

10.12. Notice that the NFA of Illustration 10.3.1 had a very direct cor-
respondence with the corresponding RE. In fact, if we apply the GNFA
method to convert it to an RE, we will obtain an RE that is very close
to that in Figure 10.14. However, the NFA of Section 10.3.2 when con-
verted to an RE resulted in an extremely complex RE. Now, if we were
to convert this RE back to an NFA using the procedure described in
Illustration 10.3.1, we would obtain something quite different from the
NFA of Figure 10.6. Intuitively describe the kinds of NFAs and REs for
which close correspondence will be maintained during conversions, and
those NFAs and REs where such correspondence will not be obtained.

10.13. Instantiate the NFA in Figure 9.3 for n = 2 and n = 3, calling
these machines N2 and N3, respectively. Perform union and concate-
nation. With respect to both these results, list eight strings in lexico-
graphic order.

10.14. For the N3 machine in Exercise 10.13, perform the star oper-
ation. How does the result differ from the machine in Figure 9.3 for
k = 3?

10.15. Reverse the NFAs in Figure 9.2 and Figure 9.3 for n = 3. Con-
vert each resulting NFA to a DFA and compare their languages.

10.16. Modify the regular expression in Figure 10.14 to account for the
constraint that no two consecutive bits may be in error. Perform this
modification in two ways:

1. By directly editing the RE of Figure 10.14
2. By constraining the RE of Figure 10.14 suitably

10.5 Ultimate Periodicity and DFAs 183

Compare the results using grail by obtaining isomorphic minimal
DFAs.

10.17. Complete the derivation in Page 173.

10.18. Express the NFA to RE conversion algorithm through recursive
pseudocode. Assume that you are given a preprocessed NFA. Check
whether this NFA is “done” by seeing that it has a direct path from
B to E, and if so, output the RE that labels this path. Else, express
the choice of a state s at random using ∃ or choose. Then, eliminate s,
updating the REs of all the states that are directly reachable from s or
directly reach s. Recurse on the resulting automaton.

10.19. Convert the DFA of Figure 9.5 into a regular expression us-
ing the conversion procedure that you just now pseudocoded in Exer-
cise 10.18. Now convert the RE you obtain to an NFA. Determinize
this NFA, and compare the resulting DFA to the one you started from.

10.20. Another way to convert NFAs to RE uses Arden’s Lemma [68],
which is:

A language equation of the form X = AX ∪ B, where ε /∈ A
has a unique solution X = A∗B.

1. Write a system of recursive equations corresponding to the example
DFA in Figure 9.5. Some of the equations are the following, where
L1, L2, etc, denote the languages of states 1, 2, etc. (meaning, if
the start state were to be set to these states, these would be the
languages of the DFA):

L1 = 0 L2

L2 = 1 L4

L2 = 1 L4

L4 = 0 L5 ∪ {ε}
2. Convert this mutually recursive system of equations into a self-

recursive equation in terms of one variable, and solve it using Ar-
den’s lemma. You may refer to a method such as Gaussean elimi-
nation which is used to solve simultaneous equations over Reals.

3. Solve the self-recursion to a closed form solution using Arden’s
lemma, and back substitute the result to obtain a closed form so-
lution to all languages.

10.21. Use the least fixed-point approach introduced in Chapter 6 to
derive Arden’s Lemma.

184 10 Operations on Regular Machinery

10.22. Apply the DFA minimization algorithm to the DFA of Fig-
ure 9.5.

10.23. Perform the grail command sequence

> echo ’(00*+"")(100*)*(11+1+"")(00*1)*(00*+"")’ | retofm
| fmdeterm >! a1fixed-unmin.txt

Then, hand-minimize the result (meaning, construct the DFA from the
regular expression by inspection and then hand-minimize it), compar-
ing it with the minimized version a1fixed.txt discussed on page 156.

10.24. Express the DFA minimization algorithm neatly using pseu-
docode. Analyze its time complexity.

10.25. Describe a language over a singleton alphabet such that the
length of strings in this language is not ultimately periodic.

10.26. Apply the homomorphism 1 → 0, 0 → 0, and ε → ε to the DFA
of Figure 9.5. Convert the resulting NFA into a DFA. Show that the
length of strings in this DFA is ultimately periodic by finding n and p
parameters.

11

The Automaton/Logic Connection, Symbolic
Techniques

Most believe that computer science is a very young subject. In a sense,
that is true - there was the theory of relativity, vacuum tubes, radio,
and Tupperware well before there were computers. However, from an-
other perspective, computer science is at least 150 years old! Charles
Babbage1 started building his Analytic Engine in 1834 which remained
unfinished till his death in 1871. His less programmable Difference En-
gine No. 2 was designed between 1847 and 1849, and built to his spec-
ifications in 1991 by a team at London’s Science Museum. As for the
‘theory’ or ‘science’ behind computer science, George Boole published
his book on Boolean Algebra2 in 1853.

Throughout the entire 150 years (or so) history of computer science,
one can see an attempt on part of researchers to understand reasoning
as well as computation in a unified setting. This direction of thinking
is best captured by Hilbert in one of his famous speeches made in the
early 1900s in which he challenged the mathematical community with
23 open problems. Many of these problems are still open, and some
were solved only decades after Hilbert’s speech. One of the conjectures
of Hilbert was that the entire body of mathematics could perhaps be
“formalized.” What this meant is basically that mathematicians had
no more creative work to carry out; if they wanted to discover a new
result in mathematics, all they had to do was to program a computer to
systematically crank out all possible proofs, and check to see whether
the theorem whose proof they are interested in appears in one of these
proofs!

1 Apparently, Babbage is also credited with the invention of the ‘cow-catcher’ that
you see in front of locomotive engines!

2 Laws of thought. (You might add: to prevent loss of thought through loose
thought).

186 11 The Automaton/Logic Connection, Symbolic Techniques

In 1931, Kurt Gödel dropped his ‘bomb-shell.3 He formally stated
and proved the result, “Such a device as Hilbert proposed is impossi-
ble!” By this time, Turing, Church, and others demonstrated the true
limits of computing through concrete computational devices such as
Turing machines and the Lambda calculus. The rest “is history!”

11.1 The Automaton/Logic Connection

Scientists now have a firm understanding of how computation and logic
are inexorably linked together. The work in the mid 1960s, notably that
of J.R. Büchi, furthered these connections by relating branches of math-
ematics known as Presburger arithmetic and branches of logic known
as WS1S4 with deterministic finite automata. Work in the late 1970s,
notably by Pnueli, resulted in the adoption of temporal logic as a for-
mal logic to reason about concurrency. Temporal logic was popularized
by Manna and Pnueli through several textbooks and papers. Work in
the 1980s, notably by Emerson, Clarke, Kurshan, Sistla, Sifakis, Vardi,
and Wolper established deep connections between temporal logic and
automata on infinite words (in particular Büchi automata). Work in
the late 1980s, notably by Bryant, brought back yet another thread of
connection between logic and automata by the proposal of using binary
decision diagrams, essentially minimized deterministic finite automata
for the finite language of satisfying instances of a Boolean formula, as
a data structure for Boolean functions. The symbolic model checking
algorithm proposed by McMillan in the late 1980s hastened the adop-
tion of BDDs in verification, thus providing means to tackle the cor-
rectness problem in computer science. Also, spanning several decades,
several scientists, including McCarthy, Wos, Constable, Boyer, Moore,
Gordon, and Rushby, led efforts on the development of mechanical
theorem-proving tools that provide another means to tackle the cor-
rectness problem in computer science.

11.1.1 DFA can ‘scan’ and also ‘do logic’

In terms of practical applications, the most touted application do-
main for the theory of finite automata is in string processing – pattern
matching, recognizing tokens in input streams, scanner construction,
etc. However, the theory of finite automata is much more fundamental

3 Some mathematicians view the result as their salvation.
4 WS1S stands for the weak monadic second-order logic of one successor.

11.2 Binary Decision Diagrams (BDDs) 187

to computing. Most in-depth studies about computing in areas such as
concurrency theory, trace theory, process algebras, Petri nets, and tem-
poral logics rest on the student having a solid foundation on classical
automata, such as we have studied so far. This chapter introduces some
of the less touted, but nevertheless equally important, ramifications of
the theory of finite automata in computing. It shows how the theory
of DFA helps arrive at an important method for representing Boolean
functions known as binary decision diagrams. The efficient represen-
tation as well as manipulation of Boolean functions is central to au-
tomated reasoning in several areas of computing, including computer-
aided design and formal verification. In Chapter 21, we demonstrate
how exploiting the “full power” of DFAs, one can represent logics with
more power than propositional logic. In Chapter 22, we demonstrate
how automata on infinite words can help reason about finite as well as
infinite computations generated by finite-state devices. In this context,
we briefly sketch the connections between automata on infinite words
as well as temporal logics. We now turn to binary decision diagrams,
the subject of this chapter.
Note: We use ∨ and + interchangeably, depending on what looks more
readable in a given context; they both mean the same (the or function).

11.2 Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs) are bit-serial DFA for satisfying
instances of Boolean formulas.5 To better understand this characteri-
zation, consider the finite language

L1 = {abcd | d ∨ (a ∧ b ∧ c)}.

Since all finite languages (a finite number of finite strings in this case)
are regular, a regular expression describing this language can be ob-
tained by spelling out all the satisfying instances of d∨ (a∧ b∧ c). This
finite regular language is denoted by the following regular expression:

(1110+1111+0001+0011+0101+0111+1001+1011+1101)

By putting this regular expression in a file called a.b.c+d, we can use
the following grail command sequence to obtain a minimal DFA for
it, as shown in Figure 11.1(a):

5 BDDs may also be viewed as optimized decision trees. We view BDDs as DFA
following the emphasis of this book. Also note that strictly speaking, we must
say Reduced Ordered Binary Decision Diagrams or ROBDDs. We use “BDD” as
a shorthand for ROBDD.

188 11 The Automaton/Logic Connection, Symbolic Techniques

(a)

1

6

1

7

0

4

1

5

0 1 0

3

1

2

0 0 1

0

1 0 1

(b)

7

1

0

6

1

5

1

4

0 1

3

1

2

0 1

0

1 0 1

Fig. 11.1. Minimal DFAs for d ∨ (a ∧ b ∧ c) for (a) variable ordering abcd,
and (b) dabc. The edges show transitions for inputs arriving according to this
order.

cat a.b.c+d | retofm | fmdeterm | fmmin | perl grail2ps.perl -

> a.b.c+d.ps

Now consider the language that merely changes the bit-serial order in
which the variables are examined from abcd to dabc:

L2 = {dabc | d ∨ (a ∧ b ∧ c)}.

Using the regular expression

(0111+1000+1001+1010+1011+1100+1101+1110+1111)

as before, we obtain the minimal DFA shown in Figure 11.1(b). The
two minimal DFAs seem to be of the same size. Should we expect this
in general? The minimal DFAs in Figure 11.1 and Figure 11.2, are
suboptimal as far as their role in decoding the binary decision goes,
as they contain redundant decodings. For instance, in Figure 11.1(a),

11.2 Binary Decision Diagrams (BDDs) 189

(a)

5

4

0

1

1

9

0 1

7

0

8

1

6

0 1

2

0

3

1

0

0 1

(b)

0

1

0

2

1

3

0

4

1

5

0

6

1

7

0

8

1

9

0

10

1

11

0

12

1

13

0

14

1

15

0

16

0

21

0

17

01 1 1 1

18

0

19

01 1

20

0 1

Fig. 11.2. Minimal DFAs where the variable ordering matters

after abc = 111 has been seen, there is no need to decode d; however,
this diagram redundantly considers 0 and 1 both going to the accepting
state 0. In Figure 11.1(b), we can make node 6 point directly to node
0. Eliminating such redundant decodings, Figures 11.1(a) and (b) will,
essentially, become BDDs; the only difference from a BDD at that point
would be that BDDs explicitly include a 0 node to which all falsifying
assignments lead to.

Let us now experiment with the following two languages where we
shall discuss these issues even more, and actually present the drawing
of a BDD.

Linterleaved = {abcdef | a = b ∧ c = d ∧ e = f}

has a regular expression of satisfying assignments

(000000+001100+000011+110000+001111+110011+111100+111111)

and
Lnoninterleaved = {acebdf | a = b ∧ c = d ∧ e = f}

190 11 The Automaton/Logic Connection, Symbolic Techniques

01

14: f

27: d

28: b

10: f

29: d

30: b

31: e

32: d

33: b

34: d

35: b

36: e

37: c

38: b 39: b

40: e

41: b 42: b

43: e

44: c

exp4: a

Fig. 11.3. BDD for a = b ∧ c = d ∧ e = f for variable order acebdf

has

(000000+010010+001001+100100+011011+101101+110110+111111).

When converted to minimized DFAs, these regular expressions yield
Figures 11.2(a) and (b), where the size difference due to the variable
orderings is very apparent. The BDD for Figure 11.2(b) created using
the BED tool appears in Figure 11.3. The commands used to create
this BDD were:

bed> var a c e b d f % declares six variables
bed> let exp4 = (a=b) and (c=d) and (e=f) % defines the desired expn.
bed> upall exp4 % builds the BDD -

bed> view exp4 % displays the BDD

By comparing Figure 11.3 against Figure 11.2(b), one can see how, in
general, BDDs eliminate redundant decodings.6

6 The numbers inside the BDD nodes—such as the “14:” and “10:” in the nodes for
variable f—may be ignored. They represent internal numberings chosen by the
BED tool.

11.3 Basic Operations on BDDs 191

BDDs are efficient data structures for representing Boolean func-
tions and computing the reachable states of state transition systems. In
these applications, they are very often ‘robust,’ i.e., their sizes remain
modest as the computation advances. As many of these state transi-
tion systems have well over 2150 states (just to pick a large number!),
this task cannot be accomplished in practice by explicitly enumerating
the states. However, BDDs can often very easily represent such large
state-spaces by capitalizing on an implicit representation of states as
described in Section 11.3. However, BDDs can deliver this ‘magic’ only
if a “good” variable ordering is chosen.

One also has to be aware of the following realities when it comes to
using BDDs:

The problem of determining an optimal variable ordering is NP-
complete (see Chapter 20 for a definition of NP-completeness). [42];
this means that the best known algorithms for this task run in ex-
ponential worst-case time.
In many problems, as the computation proceeds and new BDDs
are built, variable orderings must be recomputed through dynamic
variable re ordering algorithms, which are never ideal and add to
the overhead.
For certain functions (e.g., the middle bits of the result of multiply-
ing two N -bit numbers), the BDD is provably exponentially sized,
no matter which variable ordering is chosen.

Even so, BDDs find extensive application in representing as well as ma-
nipulating state transition systems realized in hardware and software.
We now proceed to discuss how BDDs can be used to represent state
transition relations and also how to perform reachability analysis.

11.3 Basic Operations on BDDs

BDDs are capable of efficiently representing transition relations of
finite-state machines. In some cases, transition relations of finite-state
machines that have of the order of 2100 states have been represented us-
ing BDDs. For example, a BDD that represents the transition relation
for a 100-bit digital ripple-counter can be built using about 200 BDD
nodes.7 Such compression is, of course, achieved by implicitly represent-
ing the state space; an explicit representation (e.g., using pointer based

7 Basically, each bit of such a counter toggles when all the lower order bits are a
1, and thus all the BDD basically represents is an and function involving all the
bits.

192 11 The Automaton/Logic Connection, Symbolic Techniques

data structures) of a state-space of this magnitude is practically impos-
sible. Given a transition relation, one can perform forward or backward
reachability analysis. ‘Forward reachability analysis’ is the term used
to describe the act of computing reachable states by computing the
forward image (“image”) of the current set of states (starting from the
initial states). Backward reachability analysis computes the pre-image
of the current set of states. One typically starts from the current set of
states violating the desired property, and attempts to find a path back
to the initial state. If such a path exists, it indicates the possibility of
a computation that violates the desired property.

Each step in reachability analysis takes the current set of states
represented by a BDD and computes the next set of states, also rep-
resented by a BDD. It essentially performs a breadth-first traversal,
generating each breadth-first frontier in one step from the currently
reached set of states. The commonly used formulation of traversal is in
terms of computing the least fixed-point as explained in Section 11.3.2.
When the least fixed-point is reached, one can query it to determine

the overall properties of the system. One can also check whether desired
system invariants hold in an incremental fashion (without waiting for
the fixed-point to be attained) by testing the invariant after each new
breadth-first frontier has been generated. Here, an invariant refers to
a property that is true at every reachable state.

We will now take up these three topics in turn, first illustrating how
we are going to represent state transition systems.

11.3.1 Representing state transition systems

!b b

Fig. 11.4. Simple state transition system (example SimpleTR)

We capture transition systems by specifying a binary state transi-
tion relation between the current and next states, and also specifying
a predicate capturing the initial states. If inputs and outputs are to
be modeled, they are made part of the state vector. Depending on the
problem being modeled, we may not care to highlight which parts of
the state vector are inputs and which are outputs. In some cases, the
entire state of the system will be captured by the states of inputs and

11.3 Basic Operations on BDDs 193

outputs. Figure 11.4 presents an extremely simple state transition sys-
tem, called SimpleTR. Initially, the state is 0. Whenever the state is
0, it can become 1. When it is 1, it can either stay 1 or become 0.
These requirements can be captured using a single Boolean variable b
representing the current state, another Boolean variable b

′
represent-

ing the next state,8 and an initial state predicate and a state transition
relation involving these variables, as follows:

The initial state predicate for SimpleTR is λb.¬b, since the initial
state is 0. Often, instead of using the lambda syntax, initial state
predicates are introduced by explicitly introducing a named initial
state predicate I and defining it by an equation such as I(b) = ¬b.
For brevity,9 we shall often say “input state represented by ¬b.”
The state transition relation for SimpleTR is λ(b, b

′
).¬bb

′
+ bb

′
+

b¬b
′
, where each product term represents one of the transitions.

The values of b and b
′

for which this relation is satisfied represent
the present and next states in our example. In other words,
– a move where b is false now and true in the next state is repre-

sented by ¬bb
′
.

– a move where b is true in the present and next states is repre-
sented by bb

′
.

– finally, a move where b is true in the present state and false in
the next state is represented by b¬b

′
.

This expression can be simplified to λ(b, b
′
).(b + b

′
). The above re-

lation can also written in terms of a transition relation T defined as
T (b, b

′
) = b + b

′
. We shall hereafter say “transition relation b + b

′
.”

Notice that this transition relation is false for b = 0 and b
′

= 0,
meaning there is no move from state 0 to itself (all other moves are
present).

11.3.2 Forward reachability

The set of reachable states in SimpleTR starting from the initial state
¬b can be determined as follows:

Compute the set of states in the initial set of states.
Compute the set of states reachable from the initial states in n steps,
for n = 1, 2,

8 The ‘primed variable’ notation was first used by Alan Turing in one of the very
first program proofs published by him in [89].

9 Syntactic sugar can cause cancer of the semi-colon – Perlis

194 11 The Automaton/Logic Connection, Symbolic Techniques

In other words, we can introduce a predicate P such that a state x is in
P if and only if it is reachable from the initial state I through a finite
number of steps, as dictated by the transition relation T . The above
recursive recipe is encoded as

P (s) = (I(s) ∨ ∃x.(P (x) ∧ T (x, s))).

This formula says that s is in P if it is in I, or there exists a state x
such that x is in P , and the transition relation takes x to s.
Rewriting the above definition, we have

P = λs.(I(s) ∨ ∃x.(P (x) ∧ T (x, s)))).

Rewriting again, we have

P = (λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))) P.

In other words, P is a fixed-point of

λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s)))).

Let us call this Lambda expression H:

H = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s)))).

In general, H can have multiple fixed-points. Of these, the least fixed-
point represents exactly the reachable set of states, as next explained
in Section 11.3.3.

11.3.3 Fixed-point iteration to compute the least fixed-point

As shown in Section 6.1, the least fixed-point can be obtained by “bot-
tom refinement” using the functional obtained from the recursive defi-
nition. In the same manner, we will determine P , the least fixed-point
of H, by computing its approximants that, in the limit, become P . Let
us denote the approximants P0, P1, P2, We have P0 = λx.false, the
“everywhere false” predicate. The next approximation to P is obtained
by feeding P0 to the “bottom refiner” (as illustrated in Section 6.1):

P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P0

which becomes λs.I(s). This approximant says that P is a predicate
true of s whenever I(s). While this is not true (P must represent the
reachable state set and not the initial state alone), it is certainly a bet-
ter answer than what P0 denotes, which is that there are no states in
the reachable state set! We now illustrate all the steps of this computa-
tion, taking SimpleTR for illustration. We use the abbreviation of not
showing the lambda abstracted variables in each step.

11.3 Basic Operations on BDDs 195

I = λb.¬b.
T = λ(b, b

′
). (b + b

′
).

P0 = λs.false, which encodes the fact that “we’ve reached nowhere
yet!”
P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P0.
This simplifies to P1 = I, which is, in effect, an assertion that we’ve
“just reached” the initial state, starting from P0.
Let’s see the derivation of P1 in detail. Expanding T and P0, we
have
P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ (x + s)))) (λx.false).
The above simplifies to ¬b.
By this token, we are expecting P2 to be all states that are zero or
one step away from the start state. Let’s see whether we obtain this
result.
P2 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P1.
= λs.(¬s ∨ ∃x.(¬x ∧ (x + s))).
= λs.1.
This shows that the set of states reached by all the breadth-first
frontiers (combined) that are zero and one step away from the
start state, includes every state. Another iteration would not change
things; the10 least fixed-point has been reached.

BED Commands for SimpleTR:

The BED commands given in Figure 11.5 compute the reachable set of
states using forward reachability in our example. We can see that P2,
the least fixed-point, is indeed true — namely, the characteristic predi-
cate for the set of all states. (Note: In BED, the primed variables must
be declared immediately after the unprimed counterparts). In addition
to the explicit commands to calculate the least fixed-point, BED also
provides a single command called reach. Using that, one can calculate
the least fixed-point in one step. In our present example, RS and P2 end
up denoting the BDD for true.

let RS = reach(I,T)
upall RS
view RS

Section 11.3.4 discusses another example where the details of the fixed-
point iteration using BED are discussed.

10 We do not discuss many of the theoretical topics associated with computing fixed-
points in the domain of state transition systems — such as why least fixed-points
are unique, etc. For details, please see [20].

196 11 The Automaton/Logic Connection, Symbolic Techniques

var b bp % Declare b and b’
let I = !b % Declare init state

let t1 = !b and bp % 0 --> 1
upall t1 % Build BDD for it
view t1 % View it

let t2 = b and bp % 1 --> 1
let t3 = b and !bp % 1 --> 0
let T = t1 or t2 or t3 % All three edges

upall T % Build and view the BDD
view T %

let P0 = false
upall P0
view P0

let P1 = I or ((exists b. (P0 and T))[bp:=b])
upall P1

view P1

let P2 = I or ((exists b. (P1 and T))[bp:=b])

upall P2
view P2

0 1

P0: b

P0

01

P0: b

P1: a

P1

1

P2, the least fixed-point

Fig. 11.5. BED commands for reachability analysis on SimpleTR, and the
fixed-point iteration leading up to the least fixed-point that denotes the set
of reachable states starting from I

Why Stabilization at a Fixed-Point is Guaranteed

In every finite-state system modeled using a finite-state Boolean transi-
tion system, the least fixed-point is always reached in a finite number of
steps. Let us try to argue this fact first using only a simple observation.
The observation is that all the Boolean expressions generated during
the course of fixed-point computation are over the same set of vari-

11.3 Basic Operations on BDDs 197

ables. Since there are exactly 22N
Boolean functions over N Boolean

variables (see Illustration 4.5.2), eventually two of the approximants in
the fixed-point computation process will have to be the same Boolean
function. However, this argument does not address whether it is pos-
sible to have “evasive” or “oscillatory” approximants Pi, Pi+1, . . . , Pj

such that i 1= j and Pj = Pi. If this were possible, it would be possible
to cycle through Pi, . . . , Pj without ever stabilizing on a fixed-point.
Fortunately, this is not possible! Each approximant Pi+1 is more de-
fined than the previous approximant Pi, in the sense defined by the
implication lattice defined in Illustration 4.5.3. With this requirement,
the number of these ascending approximants is finite, and one of these
would be the least fixed-point. See Andersson’s paper [7] for additional
examples of forward reachability. The book by Clarke et.al. [20] gives
further theoretical insights.

11.3.4 An example with multiple fixed-points

Consider the state transition system in Figure 11.6 with initial state s0
(called MultiFP). The set of its reachable states is simply {s0} (and is
characterized by the formula a∧ b), as there is no reachable node from
s0. Now, a fixed-point iteration beginning with the initial approximant
for the reachable states set to P0 = false will converge to the fixed-
point a ∧ b. What are the other fixed-points one can attain in this
system? Here they are:

With the initial approximant set to {s0,s1}, which is characterized
by b, the iteration would reach the fixed-point of a ∨ b, which char-
acterizes {s0,s1,s2}.
Finally, we may iterate starting from the initial approximant be-
ing 1, corresponding to {s0,s1,s2,s3}. The fixed-point attained in
this case is 1, which happens to be the greatest fixed-point of the
recursive equation characterizing reachable states.

Hence, in this example, there are three distinct fixed-points for the
recursive formula defining reachable states. Of these, the least fixed-
point is a∧b, and truly characterizes the set of reachable states; a∨b is
the intermediate fixed-point, and 1 is the greatest fixed-point. It is clear
that (a∧ b) ⇒ (a∨ b) and (a∨ b) ⇒ 1, which justifies these fixed-point
orderings. Figure 11.6 also describes the BED commands to produce
this intermediate fixed-point.

198 11 The Automaton/Logic Connection, Symbolic Techniques

var a ap b bp

let T = (a and b and ap and bp) or /* S0 -> S0 */
(!a and b and !ap and bp) or /* S1 -> S1 */
(a and !b and ap and !bp) or /* S2 -> S2 */

(!a and !b and !ap and !bp) or /* S3 -> S3 */
(!a and b and ap and !bp) or /* S1 -> S2 */
(a and !b and !ap and bp) or /* S2 -> S1 */

(!a and b and ap and bp) or /* S1 -> S0 */
(a and !b and ap and bp) /* S2 -> S0 */

upall T

view T /* Produces BDD for TREL ’T’ */

let I = a and b

let P0 = b
let P1 = I or ((exists a. (exists b. (P0 and T)))[ap:=a][bp:=b])

upall P1
view P1

 {b}
s1

 {a,b}

 {a}

s2

s0

s3
Transition System MultiFP

0 1

P0: b

P0

01

P0: b

P1: a

P1

Fig. 11.6. Example where multiple fixed-points exist. This figure shows at-
tainment of a fixed-point a ∨ b which is between the least fixed-point of a ∧ b
and the greatest fixed-point of 1. The figure shows the initial approximant P0
and the next approximant P1

11.3.5 Playing tic-tac-toe using BDDs

What good are state-space traversal techniques using BDDs? How does
one obtain various interesting answers from real-world problems? While
we cannot answer these questions in detail, we hope to leave this chapter
with a discussion of how one may model a game such as tic-tac-toe and,
say, compute the set of all draws in one fell swoop. Following through
this example, the reader would obtain a good idea of how to employ

11.3 Basic Operations on BDDs 199

mathematical logic to specify a transition system through constraints,
and reason about it. We assume the reader knows the game of tic-tac-
toe (briefly explained in the passing).

Modeling the players and the board:

We model two players, A and B. The state of the game board is modeled
using a pair of variables ai,j, bi,j (we omit the pairing symbols 〈〉 for
brevity) for each square i, j where i ∈ 3 and j ∈ 3. We assume that
player A marks square i, j with an o, by setting ai,j and resetting
bi,j, while player B marks square i, j with an x, by resetting ai,j and
setting bi,j. We use variable turn to model whose turn it is to play
(with turn = 0 meaning it is A’s turn). The state transition relation
for each square will be specified using the four variables ai,j, ai,jp, bi,j,
and bi,jp. We model the conditions for a row or column remaining the
same, using predicates samerowi and samecoli. We define nine possible
moves for both A and for B. For example, M00 model’s A’s move into
cell 0, 0; Similarly, we employ N00 to model B’s move into cell 0, 0, and
so on for the remaining cells. The transition relation is now defined as a
disjunction of the Mi,j and Ni,j moves. We now capture the constraint
atmostone that says that, at most one player can play into any square.
We then enumerate the gameboard for all possible wins and draws. In
the world of BDDs, these computations are achieved through “symbolic
breadth first” traversals. We compute the reachable set of states, first
querying it to make sure that only the correct states are generated.
Then we compute the set of states defining draw configurations. The
complete BED definitions are given in Appendix B.

Chapter Summary

This chapter briefly reviewed the history of mathematical logic and
pointed out the fact that in the early days of automata theory, math-
ematical logic and automata were discussed in a unified setting. This
approach has immense pedagogical value which this book tries to re-
store to some extent. A practitioner who works on advanced hard-
ware/software debugging method needs to know both of these topics
well. For instance, automata theory has, traditionally, been considered
an essential prerequisite for an advanced class on compilation. How-
ever, recent publications in systems/compilers (e.g., [121]) indicate the
central role played by BDDs (see below) and related notions in math-
ematical logic.

We then discuss how Boolean formulas can be represented in a
canonical fashion using the so-called ‘reduced ordered binary decision

200 11 The Automaton/Logic Connection, Symbolic Techniques

diagrams,’ or “BDDs” for short. We then present how finite-state ma-
chines can be represented and manipulated using BDDs. We show how
reachable states starting from a set of start states can be computed
using forward reachability, by using the notion of fixed-points intro-
duced in Chapter 6. We finish the chapter with an illustration of how
the game of tic-tac-toe may be modeled using BDDs, and how a tool
called BED may be used to compute interesting configurations, such as
all the draw positions, all possible win positions, etc.

BDDs are far richer in scope and application than we have room to
elaborate here. The reader is referred to [14, 13] for an exposition of how
BDDs are used in hardware and software design, how BDDs may be
combined using Boolean operations through the apply operator, etc. An
alternate proof of canonicity of BDDs appears in [14]. Our presentation
of BDDs as automata draws from [22], and to some extent from [111].

Exercises

11.1. Similar to Figure 11.3, draw a BDD for all 16 Boolean func-
tions over variables x and y. (Some of these functions are λ(x, y).true,
λ(x, y).false, λ(x, y).x, λ(x, y).y, etc. Down this list, you have more
“familiar” functions such as λ(x, y).nand(x, y), and so on. Express these
functions without the “lambda” part in BED syntax, and generate the
BDDs using BED.)

11.2.
1. Obtain an un-minimized DFA (in the form of a binary tree) for the

language
L = {abc | a ⇒ b ∧ c}

picking the best variable ordering (in case two variable orderings
are equal, pick the one that is in lexicographic order). Show the
black-hole state also.

2. Minimize this DFA, and then show the additional steps that cast
the minimized DFA into a BDD.

11.3. Consider the examples given in Figure 11.2. Construct similar
examples for the addition operation. More specifically, consider the bi-
nary addition of two unsigned two-bit numbers a1a0 and b1b0, resulting
in answer c2c1c0. Generate a BDD for the carry output bit, c2. Choose
a variable ordering that minimizes the size of the resulting BDD and
experimentally confirm using BED.

11.4. Repeat Exercise 11.3 to find out the variable ordering that max-
imizes the BDD size.

11.3 Basic Operations on BDDs 201

11.5. Represent the behavior of a nand gate, under the inertial delay
model, as a state transition system. Encode this transition system using
a BDD. Here are some general details on how to approach this problem.

The behavior of an inverter can be modeled using a pair of bits
representing its input and output. (For a nand gate, we will need to
employ three bits.) In the transport delay model, every input change,
however short, is faithfully copied to the output, but after a small delay.
There is another delay model called the inertial delay model in which
“short” pulses may not make it to the output.

The behavior of an inverter under these delay models are shown in
figures (a) and (b) below.

00 01

1110

Initial inverter state

Input changes to a 1
Output has not changed

quiescent.
inverter is
and the
transitions
The output

Input
changes
and the
inverter is
in a transient
state
again

The output
transitions
and the
inverter is
quiescent.

(a)

Input changes.
Inverter is
in a transient state.
However the input
can be withdrawn
nullifying the
scheduled output
change.

Input changes.
Inverter is
in a transient state.
However the input
can be withdrawn
nullifying the
scheduled output
change.

00 01

1110

Initial inverter state

quiescent.
inverter is
and the
transitions
The output

The output
transitions
and the
inverter is
quiescent.

(b)

11.6. Draw a BDD for the transition relation of a two-bit binary
counter with output bits a1a0 for initial state 00, counting in the usual
0, 1, 2, 3 order. Repeat for a two-bit gray-code counter that counts 00,
01, 11, 10, and back to 00.

11.7.
1. With respect to the state transition relation of Figure 11.6(a), iden-

tify all the fixed-points of the recursive equation for reachability.
2. Given a state transition system (say, as a graph, as in Figure 11.6(a)),

what is a general algorithm to determine the number of fixed-points
of its recursive equation for reachability?

11.8. Consider a three-bit shift register based counter with the indi-
cated next-state relation for its three bits:

202 11 The Automaton/Logic Connection, Symbolic Techniques

next(a) = b ; next(b) = c ; next(c) = not(and(a,b,c))

c b a

1. Represent the next-state relation of this counter using a single
ROBDD. Choose a variable ordering that minimizes the size of your
ROBDD and justify your choice.

2. Compute the set of all reachable states using forward reachability
analysis, using the reach command, starting at state 000.

3. Justify the correctness of the answer you obtain. The answer you
obtain must be a Boolean formula over a, b, c. Show that this for-
mula is satisfied exactly for those states reachable by the system.

11.9. A three-bit Johnson counter11 consists of a three-bit shift register
where the final Q output is connected to the first D input. Starting
from a reset state of 000, this counter will go through the sequence
100, 110, 111, 011, 001, and back to 000. For this counter, repeat what
Exercise 11.8 asks.

11.10. Using BED, determine the shortest number of steps to win in
Tic-Tac-Toe. Appendix B has a full description of the problem encod-
ing.

11.11. Check two conjectures concerning Tic-Tac-Toe, using BED:
(i) if a player starts by marking the top-left corner, he/she may lose;
(ii) if a player starts by marking the middle square, he/she may win.

11.12. Construct an example with four distinct fixed-points under for-
ward reachability, and verify your construction similar to that explained
in Figure 11.6.

11.13. Encode the Man-Wolf-Goat-Cabbage problem using BDDs. In
this problem, a man has to carry a wolf, goat, and cabbage across a
river. The man has to navigate the boat in each direction. He may
carry no more than one animal/object on the boat (besides him) at a
time. He must not leave the wolf and goat unattended on either bank,

11 Named after Emeritus Prof. Bob Johnson, University of Utah.

11.3 Basic Operations on BDDs 203

nor must he leave the goat and cabbage unattended on either bank.
The number of moves taken is to be minimal. Use appropriate Boolean
variables to model the problem.

