CS 3100, 11/23/10
Ganesh Gopalakrishnan

http://www.cs.utah.edu/fv
Asg8

- 1(f) - convert \iff to \implies
- All problems: assume x, y, k are in Nat
- a, b, c are of course Boolean
- I misspoke about mapping reductions
 - They need not be 1-1
- GCD questions: follow defn of GCD
 - Is a divisor
 - Is the largest
 - X and Y divisible by Z means $(X+/Y)$ div by Z
- Clique questions: Think of how cliques are built
 - What is a 1-clique? 2-clique? 3-clique? 4-clique? ...
- Do Qn4 without using Rice’s Theorem
 - Similar to Reg(TM) problem
 - “Floor trap-door is opened” based on whether M accepts w
• Counting Boolean functions over N inputs
 – Of course, only finitely many
 – But grows quite fast!

• Contrast with counting Nat -> Nat functions
 – Try to enumerate functions
 – We can find a function not in the enumeration
 – Is of higher cardinality
Mapping reductions

• Basic idea:

• Given a set A and a set B, we are seeking an “embedding of A in B” that
 – Preserves membership
 – $A \leq^m B$ is the notation
 – You can read it also as “A is less hard or the same hardness as $B”
 – We are going to practice it on 2(a) and 2(b) - no computability connotation
 • Simply try to read “IFF”
 – Then do 2(c) which tries to force you to think of language -> language mapping redns
 – $<M,w>$ pairs in A_{TM} are mapped to $<M>$ singletons in the language A_{bt}
 – See if all conditions for an MR are satisfied by the constructed mapping reduction
Mapping reductions

• Given an M and w
• Build a new TM M_w that has “w” embedded in it
 – Say in a “data array”
• Then give M_w to the claimed decider for A_{bt}
• What will M_w do when run?
 – Erases input
 – Writes w from data array onto tape
 – Runs M’s code on input
• If $D_{A_{bt}}$ can take machines in an “unsuspecting” manner and claim to answer the acceptance of “e” of those machines
 – Then it may be fed a “loaded” machine such as M_w
Mapping reductions

• Study mapping reduction in the case of NPC (3CNF formula to Graphs) also

• Preserves hardness in both cases
 – If we can solve A_{bt}, we can solve A_{TM} because A_{TM} is <= in hardness
 – If we can solve Clique in poly-time, we can solve 3SAT also in poly-time
MT2

• Language blending
 – S -> 0S | 1S | e | T
 – T -> generates a CFG but its structure is blended away!

Try this:
 S -> T T | U
 U -> 0 U 0 0 | #
 T -> 0 T | T 0 | #
Complexity theory

• Various complexity classes
• Reduction principles remain the same
• Exp-time complete
• P-space complete
 – Pspace and Npspace are the same
 – Space can be reused! Time can’t be!
 • How about energy?
 • Charles Seitz and Tom McKnight (and others) used to talk about “Hot clocking” and “Adiabatic circuits”
 • Charge sloshes back and forth (inductor in clock path; circuit is capacitive)
 • Some energy recovery happens - as opposed to this, in real CMOS ckt, the energy pumped into the capacitors is destroyed and turned into heat
 – So I don’t know whether the “reuse” of energy happens in the same sense
 • Google queries: each can heat a cup of water to near boil
 • But the water in the hydro plant would otherwise have hit the rocks and generated heat that way also
 – Bottomline: if you harvest energy at every spot, perhaps we are OK burning a whole lot (roads and roofs can produce energy)
Complexity theory

• NP-complete
 – Ptime and Nptime are different
• NP-hard
• P-complete
 – Relevant for parallelization
 – BFS can be parallelized more easily
 – DFS - not so
 • Is P-complete
Complexity theory

• Sometimes, complexity classes are not known
• E.g. for some problems, the time-complexity characterization is still an open problem
• In that case, just do what we can! i.e. get space complexity results
• NP-hard : At least as hard as NP
 – All problems in NP have a \(<=m\) to that problem which is NPH
 – Note that Diophantine is NPH
 – At least as hard as NP
 – But really really really hard (undecidable)
 – So to show NPC, must show that it is in NP also
 – ND algorithm has a P-time solution
Complexity theory

- ND algorithm
- Guess and check
- Guess must result in poly-long “certificate”
- Check must be doable in poly-time
- Showing that some problems have poly certificates took effort!
 - Pratt showed that Primality certificates are poly (in 1976)
 - But then we have a cool result: If NPC and CO-NP then NP = Co-NP
 - But since the consequent is unlikely, then for problems that are NP and Co-NP, then it may be that they are not NPC
 - Sure enough, Agrawal, Kayal, and Saxena (the latter two are BS CS students!) showed that primarily has a Det Poly checking algorithm
 - This is NOT the same as prime factorization: the language changes!
Complexity theory

• The same happened to lin programming
• Kachian came up with Poly algorithm
• But it was well known that Lin Prog and its complement are in NP
• (there is more to this... ask Prof. Suresh Venkat)

• Certificate “blowup” is indicative of hardness
• You saw that in PCP and also in Diophantine in a different light (not having succinct certificates is trouble)
Complexity theory

• Strongly NPC
 – Problem hardness does not change by encoding method
 – 3SAT, Tetris, etc are so
 – 3-partitioning is so

• Not strongly NPC (pseudo-polynomial)
 – Can reduce complexity by bloating input
 – 2-partitioning is so
NPC uses

• Don’t run away if NPC
• Don’t run away if undecidable
• All it means is that the FULL language is hard
• Pieces of the language may be easy
• That is what BDDs will sort of teach us
• Will do this + Bool Sat after Turkey-Day
• Gobble Gobble meanwhile!
Wish you...