
CS 3100, 11/23/10
Ganesh Gopalakrishnan

1 

h"p://www.cs.utah.edu/fv    

Asg8

2 

•  1(f) – convert <==> to =>
•  All problems: assume x,y,k are in Nat
•  a,b,c are of course Boolean
•  I misspoke about mapping reductions

–  They need not be 1-1
•  GCD questions: follow defn of GCD

–  Is a divisor
–  Is the largest
–  X and Y divisible by Z means (X+/-Y) div by Z

•  Clique questions : Think of how cliques are built
–  What is a 1-clique? 2-clique? 3-clique? 4-clique? …

•  Do Qn4 without using Rice’s Theorem
–  Similar to Reg_TM problem
–  “Floor trap-door is opened” based on whether M accepts w

Asg8

3 

•  Counting Boolean functions over N inputs
–  Of course, only finitely many
–  But grows quite fast!

•  Contrast with counting Nat -> Nat functions
–  Try to enumerate functions
–  We can find a function not in the enumeration
–  Is of higher cardinality

Mapping reductions

4 

•  Basic idea:

•  Given a set A and a Set B, we are seeking an “embedding of A in B” that
–  Preserves membership

–  A <=m B is the notation

–  You can read it also as “A is less hard or the same hardness as B”

–  We are going to practice it on 2(a) and 2(b) – no computability connotation
•  Simply try to read “IFF”

–  Then do 2(c) which tries to force you to think of language -> language mapping redns

–  <M,w> pairs in A_TM are mapped to <M> singletons in the language A_bt
–  See if all conditions for an MR are satisfied by the constructed mapping reduction

Mapping reductions

•  Given an M and w
•  Build a new TM M_w that has “w” embedded in it

–  Say in a “data array”
•  Then give M_w to the claimed decider for A_bt
•  What will M_w do when run?

–  Erases input
–  Writes w from data array onto tape
–  Runs M’s code on input

•  If D_A_bt can take machines in an “unsuspecting”
 manner and claim to answer the acceptance of “e” of
 those machines
–  Then it may be fed a “loaded” machine such as M_w

5 

Mapping reductions

•  Study mapping reduction in the case of NPC (3CNF formula to
 Graphs) also

•  Preserves hardness in both cases
–  If we can solve A_bt, we can solve A_TM because A_TM is <= in hardness

–  If we can solve Clique in poly-time, we can solve 3SAT also in poly-time

6 

MT2

7 

•  Language blending
– S -> 0S | 1S | e | T
– T -> generates a CFG but its structure is

 blended away!
Try this:
 S -> T T | U

 U -> 0 U 0 0 | #
 T -> 0 T | T 0 | #

Complexity theory
•  Various complexity classes
•  Reduction principles remain the same
•  Exp-time complete
•  P-space complete

–  Pspace and Npspace are the same
–  Space can be reused! Time can’t be!

•  How about energy?
•  Charles Seitz and Tom McKnight (and others) used to talk about “Hot

 clocking” and “Adiabatic circuits”
•  Charge sloshes back and forth (inductor in clock path; circuit is capacitive)
•  Some energy recovery happens – as opposed to this, in real CMOS ckts, the

 energy pumped into the capacitors is destroyed and turned into heat
–  So I don’t know whether the “reuse” of energy happens in the same sense

•  Google queries : each can heat a cup of water to near boil
•  But the water in the hydro plant would otherwise have hit the rocks and

 generated heat that way also

–  Bottomline: if you harvest energy at every spot, perhaps we are OK
 burning a whole lot (roads and roofs can produce energy)

8 

Complexity theory
•  NP-complete

–  Ptime and Nptime are different
•  NP-hard
•  P-complete

–  Relevant for parallelization
–  BFS can be parallelized more easily
–  DFS – not so

•  Is P-complete

9 

Complexity theory

•  Sometimes, complexity classes are not known
•  E.g. for some problems, the time-complexity

 characterization is still an open problem
•  In that case, just do what we can! i.e. get space

 complexity results
•  NP-hard : At least as hard as NP

–  All problems in NP have a <=m to that problem which is NPH
–  Note that Diophantine is NPH
–  At least as hard as NP
–  But really really really hard (undecidable)
–  So to show NPC , must show that it is in NP also
–  ND algorithm has a P-time solution

10 

Complexity theory

•  ND algorithm
•  Guess and check
•  Guess must result in poly-long “certificate”
•  Check must be doable in poly-time
•  Showing that some problems have poly certificates took

 effort!
–  Pratt showed that Primality certificates are poly (in 1976)
–  But then we have a cool result: If NPC and CO-NP then NP = Co-NP
–  But since the consequent is unlikely, then for problems that are NP and Co-NP,

 then it may be that they are not NPC
–  Sure enough, Agrawal, Kayal, and Saxena (the latter two are BS CS students!)

 showed that primarily has a Det Poly checking algorithm
–  This is NOT the same as prime factorization : the language changes!

11 

Complexity theory

•  The same happened to lin programming
•  Kachian came up with Poly algorithm
•  But it was well known that Lin Prog and its complement

 are in NP
•  (there is more to this… ask Prof. Suresh Venkat)

•  Certificate “blowup” is indicative of hardness
•  You saw that in PCP and also in Diophantine in a

 different light (not having succinct certificates is
 trouble)

12 

Complexity theory

•  Strongly NPC
– Problem hardness does not change by

 encoding method
– 3SAT, Tetris, etc are so
– 3-partitioning is so

•  Not strongly NPC (pseudo-polynomial)
– Can reduce complexity by bloating input
– 2-partitioning is so

13 

NPC uses

•  Don’t run away if NPC
•  Don’t run away if undecidable
•  All it means is that the FULL language is

 hard
•  Pieces of the language may be easy
•  That is what BDDs will sort of teach us
•  Will do this + Bool Sat after Turkey-Day
•  Gobble Gobble meanwhile!

14 

Wish you…

15 

