
19

Complexity Theory and NP-Completeness

The theory of NP-completeness is about a class of problems that have
defied efficient (polynomial-time) algorithms, despite decades of intense
research. Any problem for which the most efficient known algorithm
requires exponential time1 is called intractable. Whether NP-complete
problems will remain intractable forever, or whether one day someone
will solve one of the NP-complete problems using a polynomial-time al-
gorithm remains one of the most important open problems in comput-
ing. The Clay Mathematics Institute has identified seven Millennium
Problems, each carrying a reward of 1 million (US) for the first person
or group who solves it; the ‘P =NP’ problem is on this list. Stephen
Cook provides an official description of this problem, and associated
(extremely well-written) set of notes, also at the Clay web site [23].

The theory of NP-completeness offers a way to “bridge” these prob-
lems through efficient simulations (polynomial-time mapping reduc-
tions ≤P (Definition 16.4) going both ways between any two of these
problems) such that if an efficient algorithm is found even for one of
these problems, then an efficient algorithm is immediately obtained
for all the problems in this class (recall our discussions in Chap-
ter 1, page 11). Section 19.1 presents background material. Section 19.3
presents several theorems and their proofs. Section 19.4 provides still
more illustrations that help avoid possible pitfalls. Section 19.5 dis-
cusses notions such as CoNP. Section 19.5 concludes.

1 The best known algorithm for an intractable problem has complexity O(kn) for
an input of length n, and k > 1.

346 19 Complexity Theory and NP-Completeness

19.1 Examples and Overview

19.1.1 The traveling salesperson problem

The traveling salesperson problem is a famous example of an NPC prob-
lem. Suppose a map of several cities as well as the cost of a direct
journey between any pair of cities is given.2 Suppose a salesperson is
required to start a tour from a certain city c, visit the other n − 1
cities in some order, but visiting each city exactly once, and return to
c while minimizing the overall travel costs. What would be the most
efficient algorithm to calculate an optimal tour (optimal sequence of
cities starting at c and listing every other city exactly once)?

• This problem is intractable.
• This problem has also been shown to be NPC.

The NPC class includes thousands of problems of fundamental impor-
tance in day-to-day life - such as the efficient scheduling of airplanes,
most compact layout of a set of circuit blocks on a VLSI chip, etc. They
are all intractable.

19.1.2 P-time deciders, robustness, and 2 vs. 3

NPC

P

NP

Fig. 19.1. Venn diagram of the language families P, NP, and NPC; these set
inclusions are proper if P != NP — which is an open question

2 Assume that these costs, viewed as a binary relation, constitute a symmetric
relation.

19.1 Examples and Overview 347

The space of problems we are studying is illustrated in Figure 19.1.
It is not know whether the inclusions in Figure 19.1 are proper.3 The
oval drawn as P stands for problems for which polynomial time deciders
exist.

Let

TIME(t(n)) = { L | L is a language decided by an O(t(n)) time TM }
Then,

P = ∪k≥0 TIME(nk).

As an example, the following language L0n1n is in P

L0n1n = {0n1n | n ≥ 0}
because

• it is in TIME(n2), as per the following algorithm, A1:
− Consider a DTM that, given x ∈ Σ∗, zigzags on the input tape,

crossing off one 0 and then a (supposedly matching) 1. If the
tape is left with no excess 0s over 1s or vice versa, the DTM
accepts; else it rejects.

• It is even in O(n logn) as per the following algorithm, A2:
− In each sweep, the DTM scores off every other 0 and then every

other 1. This means that in each sweep, the number of surviving
0s and 1s is half of what was there previously. Therefore, log(n)
sweeps are made, each sweep spanning n tape cells. The stopping
criterion is the same as with algorithm A1.

Another member of P is TwoColor (see Exercise 19.1); here two-
colorable means one can color the nodes using two colors, with no two
adjacent nodes having the same color:

TwoColor = {〈G〉 | G is an undirected graph that is two colorable }
We shall define NP and NPC later in this chapter.

19.1.3 A note on complexity measurement

We will not bother to distinguish between N and N log(N), lumping
them both into the polynomial class. The same is true of N k logm(N)
for all k and m. Our complexity classification only has two levels: “poly-
nomial” or “exponential.” The latter will include the factorial function,
and any such function that is harder than exponential (e.g., Acker-
mann’s function).
3 When the 1M Clay Prize winner is found, they would either assert this diagram

to be exact, or simply draw one big circle, writing “P” within it – with a footnote
saying “NP and NPC have been dispensed with.”

348 19 Complexity Theory and NP-Completeness

19.1.4 The robustness of the Turing machine model

There are a mind-boggling variety of deterministic Turing machines:
those that have a doubly-infinite tape, those that have multiple tapes,
those that employ larger (but finite) alphabets, and even conventional
deterministic random-access machines such as desktop and laptop com-
puters (given an unlimited amount of memory, of course). All this va-
riety does not skew our two-scale complexity measurement:

− P is invariant for all models that are polynomially equivalent to the
deterministic single-tape Turing machine (which includes all these
unusual Turing machine varieties)

− P roughly corresponds to the class of problems that are realistically
solvable on modern-day random-access computers.

Hence, studying complexity theory based on deterministic single-tape
Turing machines allows us to predict the complexity of solving problems
on real computers.

19.1.5 Going from “2 to 3” changes complexity

It is a curious fact that in many problems, going from “2 to 3” changes
the complexity from polynomial to seemingly exponential. For instance,
K-colorability is the notion of coloring the nodes of a graph with K
colors such that no two adjacent nodes have the same color. Two-
colorability is in P, while three-colorability is NPC. This is similar to
the fact that the satisfiability of 2-CNF formulas is polynomial (Sec-
tion 18.3.8), while that of 3-CNF formulas is NPC (Theorem 19.8). The
reasons are, not surprisingly, somewhat similar.

19.2 Formal Definitions

We now proceed to define the remaining ovals in Figure 19.1.

19.2.1 NP viewed in terms of verifiers

We now present the verifier view of NP, with the decider view presented
in Definition 19.5.

Definition 19.1. (Verifier view of NP) A language L is in NP if there
exists a deterministic polynomial-time Turing machine VL called the
verifier, such that given any w ∈ Σ∗, there exists a string c ∈ Σ∗ such
that x ∈ L exactly when VL(w, c) accepts.

19.2 Formal Definitions 349

Here, c is called a certificate. It also corresponds to a “guess,” as in-
troduced in Section 15.5.1 of Chapter 15 (some other equivalent terms
are witness, certificate, evidence, and solution). According to Defini-
tion 19.1, the language

Clique = {〈G, k〉 | G is an undirected graph having a k-clique}

is in NP because there exists a verifier VClique such that

Clique = {〈G, k〉 | There exists c such that VClique accepts (G, k, c)}.

Here, c is a sequence of k nodes. VClique is a polynomial-time algo-
rithm that is captured by (as well as carried out by) a deterministic
Turing machine. This DTM does the following: (i) checks that G is an
undirected graph, and c is a list of k nodes in G, and (ii) verifies that
the nodes in c indeed form a clique. Note that the ability to verify a
guess in polynomial-time means that the length of c must be bounded
by a polynomial in terms of input size.

Given G and k, all known practical algorithms take exponential time
to find out which k nodes form a clique. On the other hand, given an
arbitrary list of k nodes, verifying whether these form a clique is easy
(takes a linear amount of time). Problems in NP share this property
by definition. Recall our discussions in Section 15.5.1 about Mersenne
primes that also shares this property of easy verifiability.4

19.2.2 Some problems are outside NP

It is indeed remarkable that there are problems where even verifying
a solution is hard, taking an exponential amount of time with respect
to all known algorithms for these problems! Clearly these problems
do not belong to NP. For example, for the Clique problem defined
in Chapter 17, efficient verifiers have, so far, remained impossible to
determine. Intuitively, this seems to be because languages (problems)
such as Clique seem to call for an enumeration of all candidate list of
k nodes and an assertion that each such list, in turn, does not form
a clique.5 It seems that the certificates for these problems must be
4 Students believe that every problem assigned to them is NP-complete in difficulty

level, as they have to find the solutions. Teaching Assistants, on the other hand,
find that their job is only as hard as P, as they only have to verify the student
solutions. When some students confound the TAs, even verification becomes hard
- something discussed in Section 19.2.2.

5 Continuing with the analogy introduced in Chapter 17, we are being asked to
prove that no group of k people know each other, as opposed to proving that
some k people know each other.

350 19 Complexity Theory and NP-Completeness

exponentially long, because they are a concatenation of an exponential
number of these candidate list of nodes mentioned above. The mere
act of reading such certificates consumes an exponential amount of
time! Of course, these are simply conjectures: it is simply not know
at present how to prove that problems such as Clique cannot have
succinct (polynomially long) certificates.

To sum up, problems whose solutions are easy to verify (NP) are, in
some sense, easier than problems whose solutions are not easy to verify
— even though finding the solution is hard in both cases. As Pratt puts
it so eloquently in his paper where he proves that primes are in NP
[98],

“The cost of testing primes and composites is very high. In con-
trast, the cost of selling composites (persuading a potential cus-
tomer that you have one) is very low—in every case, one multi-
plication suffices. The only catch is that the salesman may need
to work overtime to prepare his short sales pitch.

19.2.3 NP-complete and NP-hard

Definition 19.2. (NP-complete) If a language L is shown to be in NP,
and furthermore, if it can be shown that for every language X ∈ NP,
X ≤P L, then L is NPC.

Therefore, showing a problem to be in NP is a prerequisite to showing
that it is NPC.

Definition 19.3. (NP-hard) If for all X ∈ NP we have X ≤P L, then
L is said to be NP-hard.

From all this, “NPC” means “NPH” and “belongs to NP.”

Note: If L is NP-hard, it means that L is at least as hard as NP.
It is possible that L is so hard as to be undecidable, as is shown in
Section 19.4.

19.2.4 NP viewed in terms of deciders

In Definition 19.1, NP was defined with the help of deterministic Tur-
ing machines VL which are verifiers. There is an alternative definition
of NP in terms of nondeterministic Turing machines, which is now pre-
sented, after presenting the notions of a nondeterministic decider and
a nondeterministic polynomial-time decider.

19.2 Formal Definitions 351

Definition 19.4. (NP decider) An NDTM NL with starting state q0 is
a nondeterministic decider for a language L exactly when for all x ∈ Σ∗,
x ∈ L if and only if NL has an accepting computation history starting
at q0x. It is an NP (nondeterministic polynomial-time) decider for L if,
for all strings x ∈ L, the length of the shortest accepting computation
history starting at q0x is O(nk).

Note that we are not requiring this NDTM to terminate along all paths.
Using the notion of ‘shortest,’ we are able to ignore all other paths.

Definition 19.5. (Decider view of NP) NP is the class of decidable
languages such that associated with each L ∈ NP is a nondeterministic
polynomial-time decider.

Definition 19.4 is adopted in [44], [39], and [67]. In [111], different defi-
nitions (that consider the longest computation) are employed. The ad-
vantages of definitions that go by the shortest accepting computation
history are the following:

• It allows NDTMs to be designed without special precautions that
are irrelevant in the end. In particular, we do not need to define
the NDTMs to avoid paths that are unbounded in length (see Sec-
tion 19.2.5 for an example).

• It helps focus one’s attention on positive outcomes (the x ∈ L case),
as well as the “guess and check” principle of Section 15.5.1, and,
last but not least,

• It helps present and prove Theorem 19.6 very clearly.

Also, please note the following:

• A nondeterministic polynomial-time decider Turing machine NL

has nondeterministic polynomial runtime. ‘Nondeterministic poly-
nomial’ is a different way of measuring runtime, different from how
it is done with respect to DTMs, where run times are measured in
terms of the number of steps taken by a DTM from start to finish
over all inputs, where each input induces exactly one computation
history. In case of NP, for each input, there could be multiple com-
putation histories, and we simply focus on the shortest ones.

19.2.5 An example of an NP decider

These notions are best explained using an example; we choose Fig-
ure 15.3 for this purpose. Given any string of the form ww, this ma-
chine generates one guess (refer to Section 15.5.1) that correctly identi-
fies and checks around the midpoint, ultimately leading to acceptance.

352 19 Complexity Theory and NP-Completeness

However, this machine also has many useless guesses that lead to re-
jection. In fact, there is no a priori bound on the number of times this
NDTM loops back to state q2 before exiting the loop! It could, there-
fore, be guessing any point that is arbitrarily away from the left-end of
the tape to be the midpoint! Of course we could easily have defined a
“better” NDTM that rejects as soon as we are off the far right-end of
the input. However, such “optimizations” are not helpful in any way;
keep in mind that

• NDTMs are mathematical devices that only serve one purpose: to
measure complexity in a manner that implements the “guess and
check” idea discussed in Section 15.5.1 (and further discussed in
this chapter).

• In its role as a theoretical device, it is perfectly normal for an
NDTM to have a computation tree that has an infinite number
of branches out of its nondeterministic selection state(s). However,
since we measure the time complexity in terms of the shortest ac-
cepting computation history, these longer paths automatically end
up getting ignored.

Theorem 19.6. The verifier view of NP (Definition 19.1) and the de-
cider view of NP (Definition 19.4) are equivalent.

Proof outline:
With respect to the first part of the proof, we observe that an NDTM

can always be designed to have a loop similar to the self-loop at state
q2 of Figure 15.3. In this loop, it can write out any string from the tape
alphabet and then call it “the certificate c” and then verify whether
it is, indeed, a certificate. Now, if there exists any certificate at all,
then one would be found in this manner. Furthermore, if there exists a
polynomially bounded certificate, then again, it would be found since
we heed only the shortest accepting computation history. For the second
part of the proof, we let the certificate be tree paths, as described in
Section 15.6.2.
Proof: Given VL, we can build the NDTM NL as follows:

N_L =
Accept input w;
Employ a nondeterministic loop, and write out
a certificate string c on the tape; c is
an arbitrary nondeterministically chosen finite string;
c is written after the end of w;

Run V_L on (w,c), and accept if V_L accepts.

19.3 NPC Theorems and proofs 353

Going by our definition of the shortest accepting computation history,
there will be one certificate that works, since VL has a certificate that
works. Therefore, NL will consist of the certificate generation phase
followed by feeding VL with w and c. The NL thus constructed will
have a nondeterministic polynomial runtime and decides L. !

• Given NL, we can build the NDTM VL as follows.

V_L =
On input w, c,
Use c to guide the selection among the
nondeterministic transitions in N L;

Accept when N L accepts.

In essence, c would be a sequence of natural numbers specifying which
of the nondeterministic selections to make (“take the first turn; then
the third turn; then the second turn; . . .6). Now, if NL has an accepting
computation history, there is such a certificate c that leads to accep-
tance. Hence, the DTM VL would be a deterministic polynomial-time
verifier for w, c. !

19.2.6 Minimal input encodings

In measuring complexity, one must have a convention with regard to
n, the length of the input. The conventions most widely used for this
purpose are now explained through an example.. Consider the Clique
problem again. To measure how much time it takes to answer this
membership question, one must encode 〈G, k〉 “reasonably”—in a min-
imality sense. In particular, we should avoid encoding 〈G, k〉 in a unary
fashion. Doing so can skew the complexity. Details are in Section 19.5.

19.3 NPC Theorems and proofs

Definition 19.2 defined L ∈ NPC in terms of a reduction from all
X ∈ NP. This may seem to be an infeasible recipe to follow, as there are
ℵ0 languages that are in NP. Historically, only one problem was solved
using this tedious approach (detailed in Section 19.3.1). All other prob-
lems shown to be NPC were proved using Definition 19.7, which offers

6 Imagine a boat in a lake being turned and pushed around by the hands of a giant,
and its rudder limply rotating, following the motions of the boat. The motions of
the rudder are analogous to c.

354 19 Complexity Theory and NP-Completeness

first proved
NPC

Problem Problems
subsequently
proved NPC

P−time
Mapping
Reduction

P−time
Mapping
Reduction

All of NP

Fig. 19.2. Diagram illustrating how NPC proofs are accomplished. Defini-
tion 19.2 is illustrated by the reduction shown on the left while Definition 19.7
is illustrated on the right.

a much more practical recipe, assuming there exists at least one NPC
language.7

Definition 19.7. (NP-complete) A language L is NPC if L ∈ NP and
furthermore, for some other language L

′ ∈ NPC, we have L
′ ≤P L.

This definition is equivalent to Definition 19.2 because if L
′ ∈ NPC, we

have ∀X ∈ NPC : X ≤P L
′
, and ≤P is transitive. The “funnel diagram”

in Figure 19.2 illustrates this approach.
In order to identify the very first NPC problem, we do need to go

by Definition 19.2. The first problem that had this ‘honor’ was 3-CNF
satisfiability (“3-SAT”), as Cook and Levin’s celebrated proof shows.
Recall from Section 18.3.7 general discussions about 3-CNF.

19.3.1 NP-Completeness of 3-SAT

Theorem 19.8. 3-CNF satisfiability is NP-complete.

3-SAT is in NP

We go by Definition 19.1. Consider a satisfying assignment σ for a given
3-CNF formula ϕ. Clearly, σ is of polynomial length, and verifying that
it satisfies ϕ takes polynomial-time through a verification algorithm
that substitutes into ϕ as per σ and simplifies the formula to true or
false.

7 Like the proverbial ‘chicken and the egg,’ we assume the first egg, - er, first chicken

19.3 NPC Theorems and proofs 355

For any L ∈ NP, L ≤P 3-SAT

We sketch the proof emphasizing the overall structure of the proof as
well as some crucial details. For example, (i) we show how the existence
of a deterministic polynomial time algorithm for 3-SAT implies the ex-
istence of such an algorithm for any problem in NP, and (ii) we show
how, given a specific NP problem such as Clique and given a determin-
istic polynomial algorithm for 3-SAT, we can obtain a deterministic
polynomial algorithm for Clique.

Consider some L ∈ NP. Then there exists an NDTM decider NL

for L. What we have to show is that there exists a polynomial-time
mapping reduction f from L to 3-CNF such that given NL and an
arbitrary w ∈ Σ∗, there exists a 3-CNF formula ϕL,w that can be
obtained from NL and w using f , such that ϕL,w is satisfiable if and
only if w ∈ L.

Punchline: Therefore, if one were to find a polynomial-time algo-
rithm for 3-CNF satisfiability, there would now be a polynomial-
time algorithm for every L in NP.

To prove the existence of the mapping reduction alluded to above,
refer to Figure 19.3. Consider the computation of NL on some w ∈ Σ∗

starting from the instantaneous description ID0 = q0w. If w ∈ L, there
is an accepting computation history that starts with q0w and is of
polynomial length (we do not know this length exactly; all we know is
that it is a polynomial with respect to |w| = n). Let this polynomial be

Time

Space

ID0 = q0 w

ID1 = q1 w1

IDn = qa wn

Fig. 19.3. Proof of the Cook-Levin Theorem

356 19 Complexity Theory and NP-Completeness

p(n). If w /∈ L, then no accepting computation history (of any length!)
exists.

Imagine a computation history (sequence of IDs) of length p(n). In
it, (i) only a polynomial amount of new tape cells get written into (the
“space” axis) and (ii) the accepting computation history is of polyno-
mial length (the “time” axis; see Figure 19.3 for an illustration). This
figure illustrates the computation starting from q0w as a sequence of
IDs starting with ID0 at the bottom. Now, observe that if w ∈ L,
there must exist a p(n) × p(n) matrix as shown in Figure 19.3 that
(i) starts with q0w at the bottom, (ii) ends with an accepting ID at the
top, and (iii) has any two adjacent rows related by a Turing machine
transition rule. Now, it is clear that there are basically two rules, as
mentioned in Section 17.3.6: (i) one rule corresponds to a right-hand
move (δ(q, a) = (r, b,R)), and (ii) another corresponding to a left-
hand move (δ(q, a) = (r, b, L) for every c ∈ Γ). Furthermore, the effect
of these moves on adjacent IDs can be captured through “windows”
that change across two IDs. For instance, for IDi+1 obtained from IDi

through a right move, a 2 × 2 window comes into play, and for a left
move, a 3× 2 window comes into play, as mentioned in Section 17.3.6.
It is also clear that the contents of each cell in this p(n)× p(n) matrix
can be represented using a finite number of cell level Boolean variables.

Given all this, the crux of our proof is that given this p(n) × p(n)
matrix, we can build our 3-CNF formula ϕL,w involving the cell level
Boolean variables such that this formula is true exactly when the ma-
trix represents an accepting computation history (we also refer to this
3-CNF formula as a “circuit,” connoting a digital combinational cir-
cuit that can serve as a decoder for an accepting computation history
matrix). The actual construction of this formula is tedious and skipped
here (but may be found in scores of other web references or books). On
page 357, we illustrate what this formula achieves with respect to the
Clique example.

What we have sketched thus far is the existence of a mapping reduc-
tion that yields ϕL,w such that this formula is satisfiable exactly when
w ∈ L. If w /∈ L, there is no matrix that will represent an accepting
computation history, and hence ϕL,w will not be satisfiable. !

A detail about not knowing p(n)

A point that may vex the reader is this: how do we know how big a
circuit (3-CNF formula) to build, given that the circuit has to sit on top
of the p(n)×p(n) matrix, hoping to decode its contents, when we don’t
even know p(n) concretely? Fortunately, this step is not necessary—all

19.3 NPC Theorems and proofs 357

we care for is the existence of a family of circuits, one circuit for each
value of p(n). There would, in this family, exist a circuit that “works”
for every language L in NP, and correspondingly there would be a
family of f functions that produced this family of circuits. Therefore,
for each possible value of p(n), there exists an f function that produces
a matrix of size p(n) × p(n) and a 3-CNF formula that acts on this
matrix; and hence, the desired mapping reduction L ≤P 3-CNF exists
for each L ∈ NP. The existence of this mapping reduction for every
L ∈ NP allows us to claim that 3-SAT is in NPC.

What if 3-SAT is in P ?

It is good to be sure that formal proofs mean something concrete; to
this end, we subject our discussions above to an acid test. Suppose 3-
SAT is in P (which is an open question; but we entertain this thought
to see what happens) and let the decider be DP3−CNF. Because of what
NP-completeness means, we should now be in a position to argue that
there exists a deterministic polynomial-time algorithm for any L ∈ NP.
How do we achieve that?

Fortunately, this result is immediate. Since the polynomial p(n)
exists, a mapping reduction to yield ϕL,w exists. We can obtain this
formula using the mapping reduction, feed it to DP3−CNF, and re-
turn the accept/reject decision of DP3−CNF. Therefore, a deterministic
polynomial-time algorithm for an arbitrary L ∈ NP exists, which would
then mean P = NP .

Illustration on Clique

We would like to take our acid test even further: suppose 3-SAT is in P;
let us find a polynomial algorithm for Clique. Since Clique ∈ NP, it has
a nondeterministic polynomial time decider, say NClique. We can design
a specific NDTM decider for Clique. One of the most straightforward
designs for NClique would be to have an NDTM nondeterministically
write out k nodes on the tape and check whether these nodes indeed
form a k-clique. Now, there are many (exponentially many!) choices of k
nodes to write out on the tape. However, after writing out one of those
guesses on the tape, NClique would engage in a polynomially bounded
checking phase. The 3-CNF formula ϕL,w that would be synthesized
for this example will have the following properties:

• It will be falsified if the first ID (bottom row of the matrix) is not
the starting ID which, in our example, would be q0〈G, k〉.

358 19 Complexity Theory and NP-Completeness

• It will be falsified if any two adjacent rows of the matrix are not
bridged by a legitimate transition rule of the NDTM.

• It will be falsified if the final row (topmost) is not an accepting ID.
• The formula will straddle a matrix of size p(n) × p(n), where the

value of p(n) will be determined by the nature of the algorithm used
by NClique for Clique, and the value of k. In particular, p(n) will
equal the number of steps taken to write out some sequence of k
nodes nondeterministically, followed by the number of steps taken
to check whether these nodes form a clique.

In short, an accepting computation history will deposit a bit-pattern
inside this matrix to make the Boolean formula emerge true. Said an-
other way, the satisfiability of the formula will indicate the existence
of an accepting computation history (the existence of a selection of k
nodes that form a clique). Therefore, if DP3−CNF exists, Clique can be
solved in polynomial-time.

To reflect a bit, the existence of DP3−CNF is a tall order because
it gives us a mechanism to encode exponential searches as poly-
nomially compact formulas (such as ϕL,w did) and conduct this
exponential search in polynomial-time! This is one reason why
researchers strongly believe that deciders such as DP3−CNF do
not exist.

19.3.2 Practical approaches to show NPC

The most common approach to show a language L to be NPC is to use
Definition 19.7 and reduce 3-SAT to L, and then to show that L ∈ NP.
This has led many to observe that ‘NP-complete problems are 3-SAT in
disguise.’ Many other source languages for reduction (besides 3-SAT)
are, of course, possible.

Illustration 19.3.1 LetHampath =

{〈G, s, t〉 | G is a directed graph with a Hamiltonian path from s to t}.

It can be shown that Hampath ∈ NP, and further 3-SAT≤P Hampath.
This establishes that Hampath is NPC.

Illustration 19.3.2 Let us prove that Clique is NPC. First of all,
Clique ∈ NP as captured by the verifier VClique on page 349. To show
that Clique is NPH, we propose the mapping reduction from 3-SAT into

19.3 NPC Theorems and proofs 359

X1

X1

X2

X1 X1

X2

~X2

~X1

~X1

~X2~X1 ~X1

phi = (X1 \/ X1 \/ X2) /\ (X1 \/ X1 \/ ~X2) /\ (~X1 \/ ~X1 \/ X2) /\ (~X1 \/ ~X1 \/ ~X2)

graph(phi) has no
4−cliques

Fig. 19.4. The Proof that Clique is NPH using an example formula ϕ =
(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x1 ∨ ¬x2)

Clique as captured in Figure 19.4. Basically, for every clause, we intro-
duce an “island” of nodes with each node in the island labeled with the
same literal as in the clause. There are no edges among the nodes of an
island. Between two islands, we introduce an edge between every pair
of literals that can be simultaneously satisfied (are not complementary
literals).

Suppose ϕ ∈ 3-SAT. This means that there is an assignment that
satisfies every clause. Let li be the literal that is set to true by the
assignment in clause ci, for every i ∈ C, where C is the number of
clauses (for uniqueness, we may select the literal with the lowest index
that is set to true in each clause). In this case, by construction, graph(ϕ)
will have a clique connecting the nodes l0, l1, . . . , lC−1, l0.

Suppose ϕ /∈ 3-SAT. Now suppose we assume that graph(ϕ) has a
k-clique. The existence of a k-clique means that by following the edges
of the clique, it should be possible to pick one literal per clause such
that all these literals (and hence these clauses) can be simultaneously
satisfied. However, from Theorem 18.1, we know that given any unsat-
isfiable CNF formula ϕ, one can pick an arbitrary assignment σ, and be
assured that σ(ϕ) (the formula under the assignment) has one clause
all of whose literals are true, and another clause all of whose literals are
false. The clause that has all its literals false will prevent there being a
k-clique. To confirm all this, in Figure 19.4 we observe that there are
no 4-cliques.

360 19 Complexity Theory and NP-Completeness

19.4 NP-Hard Problems can be Undecidable (Pitfall)

What happens if someone shows L to be NPH but neglects to show
L ∈ NP, and yet claims that L ∈ NPC? To show the consequences of this
mistake rather dramatically, we will show that the language of Diophan-
tine equations, Diophantine, is NP-hard (NPH). Briefly, Diophantine
is the set of Diophantine equations that have integer roots. An example
of such an equation is 6x3z2 + 3xy2 − x3 − 10 = 0. This language was
shown to be undecidable by Yuri Matijasevíc in a very celebrated theo-
rem. Hence, if someone forgets to show that a language L is in NP, and
yet claims that L is NPC, he/she may be claiming that something un-
decidable is decidable! (Recall that all NPC problems are decidable.) In
short, NP-completeness proofs cannot be deemed to be correct unless
the language in question is shown to belong to NP.

19.4.1 Proof that Diophantine Equations are NPH

We follow the proof in [27] to show that the language Diophantine
below is NPH:

Diophantine = {p | p is a polynomial with an integral root}
The mapping reduction 3-SAT ≤P Diophantine is achieved as follows.
Consider a 3-CNF formula ϕ:

• Each literal of ϕ, x, maps to integer variable x.
• Each literal x maps to expression (1 − x).
• Each ∨ in a clause maps to . (times).
• Each clause is mapped as above, and then squared.
• Each ∧ maps to +.
• The resulting equation is set to 0.
• Example: map

ϕ = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y)

to
E = (x.y)2 + (x.(1 − y))2 + ((1 − x).(1 − y))2 = 0.

• To argue that this is a mapping reduction, we must show that ϕ is
satisfied iff E has integral roots. Here is that proof:
− For the forward direction, for any assignment of a variable v to

true, assign v in the integer domain to the integer 0; if v is false,
use integer 1. In our example, x = true, y = false satisfies
ϕ, and so choose x = 0, y = 1 in the integer domain. This
ensures that (x.y)2 is zero. Proceeding this way, every satisfying
assignment has the property of leaving the entire summation of
expressions 0, thus satisfying the integer equation.

19.4 NP-Hard Problems can be Undecidable (Pitfall) 361

− For the reverse direction, note that E = 0 means that each
product term in the integer domain is 0 (since squares can’t be
negative). For example, if xy is a product term in the summation
of E, we may have x = 45 and y = 0. The Boolean assignment
for this case is found as follows: for every integer variable x that
is zero, assign the corresponding Boolean variable x to true; for
integer variable x that is non-zero, assign the Boolean variable
x to false. For example, if we have x = 0 in a product term
x.y, we assign Boolean x to true. This ensures that (x ∨ y) is
true. Also, in x.(1−y) if x = 45 and y = 1, we assign y to false
and x to false. This ensures that (x∨¬y) is true. We can easily
check that this construction ensures that E = 0 exactly when
the corresponding ϕ has a satisfying assignment.

19.4.2 “Certificates” of Diophantine Equations

In order to visualize the transition from being NPC, to being outside NP
but still decidable, and finally to being undecidable, let us discuss Dio-
phantine equations in the context of certificates. Consider the language
Hampath; clearly, every member of this language has a polynomial
certificate. This certificate is a simple path (path without repeating
nodes) connecting s and t that visits every other node. Languages such
as Hampath do not have, as best as is known, polynomial certificates.
However, exponentially long certificates do exist; these certificates list
every simple path connecting s and t, thus providing cumulative evi-
dence that there does not exist a Hamiltonian path.

It is evident that Diophantine is recursively enumerable (it is TR)
but not recursive (it is not decidable). One may attempt to build a
nondeterministic machine MDio, of as yet unclear status, to process
membership of a given Diophantine equation in Diophantine: MDio

guesses a certificate in the guess-generation phase consisting of guessed
values for the variables of the equation. MDio then plugs in these values
and checks whether the given equation is satisfied (equals 0). For an
undecidable languages such as Diophantine, certificates exist, but are
unbounded for the case where the equation has a solution. When the
equation has no solution, the certificates are infinite (one has to list
every possible value for the variables and show that they do not solve
the equation).

In summary, polynomial, exponential, and unbounded certifi-
cates correspond to three classes of hardness.

362 19 Complexity Theory and NP-Completeness

19.4.3 What other complexity measures exist?

There are many other complexity metrics such as space complexity
and circuit (parallel) complexity. It must be relatively obvious what
the term ‘space complexity’ means: how much space (memory) does an
algorithm require? In this context, please note that space is reusable
while time is not. This means that the term space complexity refers to
the peak space requirement for an algorithm. There is also the funda-
mentally important result, known as Savich’s Theorem, that says that
nondeterministic Turing machines can be simulated on top of deter-
ministic Turing machines with only a polynomial added cost. This is in
contrast with time complexity where we do not know whether nonde-
terministic Turing machines can be simulated on a deterministic Turing
machine with only a polynomial added cost.

The term ‘circuit complexity’ may be far from obvious to many.
What it pertains to is, roughly, how easy a problem is to parallelize. In
circuit complexity, the intended computation is modeled as a Boolean
function, and the depth of a combinational circuit that computes this
function is measured. Problems such as depth-first search are, for in-
stance, not easy to parallelize (log-depth circuits cannot be found),
whereas breadth-first search easy to parallelize under this complexity
measure. Log-depth circuits, in a sense, help assess how easy it is to
divide and conquer a problem.

19.5 NP, CoNP, etc.

NP

P

CoNPC NPC

CoNP

Fig. 19.5. The language families P, NP, and NPC. All these set inclusions
are likely to be proper

A language L is said to be CoNP exactly when L is in NP. Similarly,
L is said to be CoNPC exactly when L is in NPC. Figure 19.5 depicts

19.5 NP, CoNP, etc. 363

these additional language classes and their likely containments. To il-
lustrate these ideas, consider the following languages which are both
subsets of positive natural numbers {1, 2, 3, . . .}:
The language

Primes = {n | (n > 1) ∧ (∃p, q > 1 : n = p × q ⇒ p = 1 ∨ q = 1}.

The language
Composites = Primes,

where the complementation is with respect to positive naturals.
Composites is clearly in NP because there exists a P-time verifier for
this language, given a certificate which is a pair of natural numbers
suggested to be factors. In [98], Pratt proves that Primes are also in
NP; he shows this result by demonstrating that there are polynomially
long proofs for primes (given a prime p, a polynomially long sequence
of proof steps can serve to demonstrate that p is such). Furthermore,
he showed that such a proof for Primes can be checked in polynomial-
time. Now, Composites is in CoNP because Primes is in NP, and
Primes is in CoNP because Composites is in NP. The question now
is: could either of these languages be NPC? Theorem 19.9 below, shows
that even if there exists one such language, then NP and CoNP would
become equal—a result thought to be highly unlikely. Surely enough,
in 2002, Agrawal et al. [1] proved that Primes are in P (and hence
Composites are also in P). Theorem 19.9 has helped anticipate the
direction in which some of the open problems in this area would resolve.

Illustration 19.5.1 (A Caveat) Please bear in mind that recognizing
a number to be composite in polynomial-time does not, by itself, give
us the ability to find its prime factors in polynomial-time. Therefore, all
public key crypto systems are still safe, despite Agrawal et al.’s result.
Factoring a composite number into its prime factors can be expressed
as a language

PrimeFactors = {(x, i, b) | ith bit of prime factorization of x is b}.

Here, it is assumed that the prime factors of x are arranged in a
sequence. Clearly, we do not want the PrimeFactors language to be
in P . It can be easily shown that this language is in NP, however. !

Theorem 19.9. L is in NPC and L is in CoNP if and only if NP =
CoNP.

364 19 Complexity Theory and NP-Completeness

Proof:
• To show that if L is NPC and CoNP then NP=CoNP.

− Assume L is NPC; therefore,
. L is in NP
. For all L1 in NP, we have L1 ≤P L. Now, assuming L is in NP

(because L is in CoNP), we have L ≤P L.
− Now, we are about to embark on showing the NP =CoNP part. For

that, consider an arbitrary L
′
in NP. Then L

′ ≤P L.
− Now, using the result of Exercise 16.9, L′ ≤P L. Also L′ ≤P L ≤P

L.
− Now, since there is an NP decider for L, there is an NP decider for

L′ also, using the above mapping reduction chain; in other words
L

′
is in CoNP.

− Now, consider an arbitrary L
′
in CoNP. This means that L′ in NP.

Since L is NPC, we have L′ ≤P L. From this we have L
′ ≤P L.

− Using the fact that L ≤P L, we have L
′ ≤P L ≤P L, or that there

is an NP decider for L
′
.

− Hence, NP = CoNP.

• To show that if NP =CoNP, then there exists an L that is NPC and
CoNP. This is straightforward: consider any NPC language L; it would
be CoNP because L is in NP and NP =CoNP.

Chapter Summary

We discussed the theory of NP-completeness, going through practical
techniques to show that a problem is NP-complete. We now discuss the
question of input encodings postponed in Section 19.2.6. In the setting
of input encodings, there are basically two classes of problems:

• Strongly NPC: Those problems where the problem remains NPC
even if the input is encoded in unary. Almost every NPC prob-
lem we have studied (e.g., Clique, 3-SAT, etc.), is strongly NPC.
In addition, the 3-partition problem (discussed momentarily), sev-
eral problems in the context of the game of Tetris [34], and several
scheduling problems are strongly NPC.

• Not Strongly NPC, or pseudo polynomial: There are problems where
encoding the input in unary can give a polynomial algorithm. The
2-partition problem is an example which has a pseudo polynomial
algorithm.

The 2-partition problem is: Given a finite set A = {a1, a2, . . . , an} of
positive integers having an overall sum of 2b, is there a subset A

′
of

19.5 NP, CoNP, etc. 365

A that sums exactly to b (in other words, A \ A
′

and A
′

sum to b)?
Note that we only determine the existence of such a subset—not which
subset it is. Analogously, the 3-partition problem seeks three disjoint
subsets that contain all the elements of A and sum to equal values.

2-partition is known to be NP-complete. However, there is a straight-
forward dynamic programming algorithm to solve the 2-partition prob-
lem, which is now briefly discussed. Stating things in genera, let g be
the ‘goal’ in terms of a subset of the ai’s adding up to g. Let T (j, g)
denote the assertion that the sum of {a1, . . . , aj} is exactly g. We now
write a recursive recipe to compute the truth of T (i + 1, g). This falls
into two cases:

1. We do not include ai+1, and T(i, g); or
2. We include ai+1, and the remaining elements add up to g − ai+1.

We build a dynamic programming table following the above recurrence,
as follows:

• T (i + 1, g) = T (i, g) ∨ ((ai+1 ≤ g) ∧ T (i, g − ai+1))
• T (1, g) = ((g = 0) ∨ g = a1)

Now, the answer we seek—whether there exists a subset of a1 through
an that adds up to b—is the value of T (n, b) when the above algorithm
finishes.

This algorithm has complexity O(n.b), as there are that many en-
tries to be filled in the memoization table T . Note that by encoding
the problem in O(n.b) bits, we can achieve polynomial-time solution.
However, a reasonable encoding of this problem takes only n log(b) bits.
Therefore, by “bloating” the input representation, 2-partition can be
solved in polynomial-time. No such luck awaits strongly NP-complete
problems—they cannot be solved in polynomial-time even with a unary
input representation (the most bloated of input representations). Fur-
ther work on this topic may be easily found on the internet.

Exercises

19.1. Show that TwoColor ∈ P.

19.2. Suppose we write a program that traverses a “tape” of n cells,
numbered 1 through n. The program performs n traversals of the tape,
with the ith traversal sequentially examining elements i through n.
What is the runtime of such a program in the Big-O notation?

19.3. 1. Let k = 2. Estimate the magnitudes of xk (polynomial) kx

(exponential) complexity growth for x = 1, 2, 5, 10, 50 and 100.

366 19 Complexity Theory and NP-Completeness

2. Estimate 222
2
...2

2

(i times) for various i (note how to read this tower:
begin with 2, and keep taking ‘2previous’).

19.4.
1. Draw an undirected graph of five nodes named a, b, c, d, e such that

every pair of nodes has an edge between them (such graphs are
called “cliques” - the above being a 5-clique).

2. What is the number of edges in an n-clique?
3. Which n-cliques are planar (for what values of n)?
4. What is a Hamiltonian cycle in an undirected graph?
5. Draw a directed graph G with nodes being the subsets of set {1, 2},

and with an edge from node ni to node nj if either ni ⊆ nj or
|ni| = |nj|. |S| stands for the size or cardinality of set S.

6. How many strong components are there in the above graph? A
strong component of a graph is a subset of nodes that are connected
pairwise (reachable from one another).

7. What is the asymptotic time complexity of telling whether a di-
rected graph has a cycle?

19.5. A Hamiltonian cycle in a graph with respect to a given node n is
a tour that begins at n, visits all other nodes exactly once, returning
to n. In a 5-clique, how many distinct Hamiltonian cycles exist? How
about in an n-clique?

19.6.
1. Suppose you are sent into a classroom where n (honest) students

are seated, and are patiently awaiting your arrival. You are charged
by your boss with determining whether some k of these students
know each other – any such subset of k students will do. Suppose
you pick exactly one random subset of k of these students and each
pair within this subset tells you that they know each other. Can
you now report back your answer to the boss?

2. The above is a nondeterministic algorithm to check whether a graph
has a k-clique. What would a deterministic algorithm be?

3. Suppose what you are charged with is to assure that no k-subset is
such that all its members know each other pairwise. Suppose you
pick exactly one random subset of k of these students and listen to
them pairwise as to whether they know each other or not. Can you
now report back any answer to your boss? How many more queries
would you need as a function of n and k?

19.7. Define the language HalfClique to be the set of input encodings
〈G〉 such that G is an undirected graph having a clique with at least

19.5 NP, CoNP, etc. 367

n/2 nodes, where n is the number of nodes in G. Show that HalfClique
is NPC.

19.8. Show that 0=-sat, as defined in Section 18.3.7, is NPC.

19.9. Problems pertaining to NPC abound in various places; rather
than repeat them, we leave it to the student / teacher to find and
assign them suitably. We close off by assigning a rather interesting
proof to read and understand.

In his MS thesis, Jason Cantin (Wisconsin) proves that the problem
of verifying memory coherence is NPC [15, 16]. Read and understand
his proof.

