
UNID Name:

CS 3100 – Open book/notes – Midterm-2 – TOTAL 75 points
PART-1 – Total 30 points (6 qns, 5 pts each)

The multiple choice problems given here can earn you positive points (correct answer) or and negative points
(incorrect). We show it as [+m/-n]. You must write a compact two-sentence (approx.) explanation
in support of your answer, without which you won’t gain any points. This explanation may help
you earn partial credits for incorrect answers.

1. [+5/-1] Choose from various answers below.

A. Language {0, 11} is context-free. (True; it is even regular.)

B. There is a deterministic Push-down automaton for the language of even length palindromes.
(False; need to guess the midpoint.)

C. There are some ambiguous context-free grammars that can be disambiguated (rewritten to become
unambiguous). (True; we saw the if/then grammar or the expression grammar.)

D. Every context-free grammar can be disambiguated. (False; there are inherently ambiguous
languages)

� All these assertions are true.

� Assertions A, B, and C are true.

� Assertion A and C alone are true. (This one)

� Assertions A and D are true.

2. [+5/-1] Choose from various answers below.

A. For infinite sets A and B, if A ⊂ B, the cardinality of A is different from that of B. (False; we
saw how Odds are a subset of Nat; yet they have the same cardinality.)

B. The cardinality of the set of all natural numbers Nat is the same as that of set of all C programs.
(True; we even proved this in class. Remember the trick of adding ; and the use of the
Schröder-Bernstein Theorem?)

C. The cardinality of Nat is the same as the cardinality of the set of all Real numbers (False; this
was shown by diagonaization.)

D. The cardinality of the set [0, 1) ⊂ Real is the same as that of [1,∞) ⊂ Real. (True; We showed
this in class. Remember the function 1/x + 1 that one of you proposed?)

� None of these assertions are true.

� Assertions B and D alone are true. (This one.)

� Assertion C and D alone are true.

� Assertion A alone is true.

3. [+5/-1] The following assertions (true or false) have been made about an arbitrary context-
free grammar. Choose from various answers below.

For every context-free grammar, there is a

A. language equivalent left-linear context-free grammar (False; not every CFG can be turned
regular which is what left-linear grammars are!)

B. language equivalent deterministic finite automaton (False; same reason as above.)

C. language equivalent push down automaton (True; we can build a PDA for a CFG)

D. language equivalent Turing machine (True; we can build a TM that matches the language
of any CFG.)

� Assertions A, B, and C are true

� Assertions C and D are true (This one.)

� Assertion C alone is true

� Assertions A, C, and D are true

4. [+5/-1] The following assertions (true or false) have been made about an arbitrary context-
free language. Choose from the answers below. Every context-free language

A. is regular (False; CFLs are not always regular.)

B. is recursive enumerable (True; CFLs are RE.)

C. is recursively enumerable but not recursive (False; this is nonsense.)

D. is recursive (True; we can decide membership in a CFP.)

� Assertions B and D are true (This one.)

� Assertions A and B are true

� Assertion C alone is true

� Assertion D alone is true

Explanation:

5. [+5/-1] Consider the following assertions.

A. For every recursive language L, there is a Turing machine M with L as its language. (This is
true. Recursive languages have TMs for them and their complement.)

2

B. For every non-determinstic push-down automaton, there is an equivalent deterministic push-down
automaton. (This is false; these are incomparable in power.)

C. The language STM of codes of self-denying Turing machines is recursively enumerable. (This is
false; we showed it through diagonalization.)

D. Non-determinstic Turing machines are strictly more powerful than Determinstic Turing machines.
(This is false.)

� Assertions A and B are true

� Assertions B and D are true

� Assertions A and C are true

� Assertion A alone is true (This one.)

6. [+5/-1] Consider the CFG where e stands for ε (“Epsilon”)

S -> 0 S | 1 S | e | T | U

T -> 0 T 1 | e

U -> U 0 | 2 U

A. The language of S is infinite (This is true; nature of the productions.)

B. There is/are non-terminal(s) that is/are not generating (This is true; U is the non-terminal.)

C. The language of S is regular. (This is true because the S production generates Σ∗ that
absorbs and makes “disappear” the CFL generated by T .)

D. The language of S is context-free and not regular (This is false.)

� Assertions A, B, and C are true. (This one.)

� Assertions A, B, and D are true.

� Assertion B and D alone are true.

� Assertion D alone is true.

PART-2 – Total 45 points – You can earn up to 50 points (extra built-in)

1. (7.5 points) Design a context-free grammar for the language

L = {aibjck | i, j, k ≥ 0, and if i = 1 then j = k}

Explain in about three sentences why this CFG is correct.

3

S -> a M | a a R N | N

M -> b M c | e

R -> a R | e

N -> P Q

P -> b P | e

Q -> c Q | e

We go through the different cases.

2. (7.5 points) Design a PDA for L directly—i.e., without converting the CFG to a PDA Explain in about
three sentences why this PDA is correct.

Answer: This PDA will simply non-determinstically branch into three possible futures. The first (when
there are no as or two as) will merge to look for b∗ and then c∗. The second (when there is a single a)
will use the stack to match.

3. (10 points) Design a deterministic Turing machine that recognizes the language 10(0 + 1)∗

Make the TM read a 1 and a 0, then accept, ignoring the
rest of the string.

4. (5 points) Solve the following PCP instance. Express your solution in terms of a sequence of tile numbers
with repetitions allowed.

Tile numbers: 1 2
00 0000
000 0

1 1 1 2 will do

5. (10 points) Why is the language
{〈G1, G2〉 | L(G1) 6= L(G2)}

recursively enumerable? Clearly explain, sketching the workings of the TM whose language this is.

We can enum strings and find out the difference in the grammars
for all grammar pairs that exhibit such a difference.

6. (5 points) Why is
{〈G1, G2〉 | L(G1) = L(G2)}

not recursively enumerable? Clearly explain.

4

Then this language will then become recursive.
But it is known that we cannot decide
if a CFG generates Σ^*---and we can make G_2 be one that
encodes Σ^*.

7. (10 points) Someone wanted to directly show that HaltTM = {〈M,w〉 | M is a TM that halts on input w}
is not recursive. They wrote a proof as follows. Please help them finish the proof.

Let H be a decider for the above language.
H(x,x) is asking if x halts when applied to x.
Define a machine D as follows.

D(x) {
If H(x,x) accepts, D goes into an infinite loop;
Else D accepts;
}

Now help the person finish the proof by arguing what the call D(D) results in. Provide the full case
analysis.

ANSWER:

If D(D) loops as per D’s defn, that is when D halts on D as per
H’s defn, because H(D,D) accepts, or D halts (does not loop) on D.

If D(D) halts as per D’s defn, that is when D loops as per
H’s defn, because H(D,D) rejects, or D does not halt (loops) on D.

Both cases result in a contradiction.

5

