
CS 3100 – Models of Computation – Fall 2010
Notes for Lecture 15 around Assignment 6 – 10/19/2010

Topics:
• Reversing CFGs
• Obtaining NFA from purely right-linear CFGs
• Simplifying CFGs (also related to nullability discussed on Page 76)
• Chomsky normal form
• CFL Pumping Lemma
• Yacc
• CFG to PDA: see online material against L14 (“JFLAP files”)
• PDA to CFG

1 Reversing CFGs

Given a string s, let sR denote the reverse of s
Given strings s and t, (st)R = tRsR

Applying this recursively,
(stu)R = (tu)RsR = uRtRsR

This idea can be applied to CFGs:

S -> A B C | 0 D | E 0 | F 0 G | 0 H 2

can be turned into an Sr grammar as follows:

Sr -> Cr Br Ar | Dr 0 | 0 Er | Gr 0 Fr | 2 Hr 0

2 NFA from Purely right-linear

Reversing

S -> A 0 | B 1 | e

A -> C 1 | 0

B -> C 1 | 1

C -> 1 | C 0

We obtain

Sr -> 0 Ar | 1 Br | e

Ar -> 1 Cr | 0

Br -> 1 Cr | 1

Cr -> 1 | 0 Cr



and an NFA

ISr - 0 -> Ar

ISr - 1 -> Br

Isr - e -> F1

Ar - 1 -> Cr

Ar - 0 -> F2

Br - 1 -> Cr

Br - 1 -> F3

Cr - 1 -> F4

Cr - 0 -> Cr

3 Simplifying CFGs

We can simplify this CFG as follows:

S -> A | B

A -> ( W A | ( X C

B -> ( W B | ( X D

P -> 0 Q | 2

Q -> P 0 | 3

W -> ( W W | ( X Y

X -> ( W X | ( X Z

W -> )

B -> e

• Notice that C,D,Y,Z are not generating symbols (they can never generate any terminal string).
Hence we can eliminate production RHS using them.
• W and B are generating (W -> ) and B -> e).
• X is not generating. Look at X -> ( W X. While ( is generating and W is generating, X on the

RHS isn’t generating – we are doing a “bottom-up marking.” The same style of reasoning applies
also to X -> ( X Z.
• Even A is not generating!
• While P and Q are generating, they are not reachable.

3.1 Nullability

The algorithm for a generating non-terminal is similar to the following from Page 76 for nullable
variables:
• Declare all variables (non-terminals) non-nullable.

2



• Repeat Go thru productions; if any has RHS empty or all entries are nullable, then mark the
LHS variable nullable
• Until there is no increase in the set of nullable variables (non-terminals).

(The book uses “variables” ; we often use “non-terminals”)

4 Chomsky Normal Form

• Get rid of all ε productions.
• Get rid of unit productions.
• Make productions binary.
• Move all terminals to unit productions.

4.1 Derivation length

Derivation length for a string of length n: 2n − 1. So we can search all derivations systematically
using dynamic programming.

4.1.1 Cocke-Kasami-Younger (CKY) parsing algorithm

The CKY parsing algorithm uses dynamic programming in a rather elegant manner. Basically, given
any string, such as 0 0 1, and a Chomsky normal form grammar such as
S → S T | 0
T → S T | 1,
the following steps describe how we “parse the string” (check that the string is a member of the
language of the grammar):

• Consider all possible substrings of the given string of length 1, and determine all non-terminals
which can generate them.
• Now, consider all possible substrings of the given string of length 2, and determine all pairs of

non-terminals in juxtaposition which can generate them.
• Repeat this for strings of lengths 3, 4, . . ., until the full length of the string has been examined.

Given string: 001

0 0 1

^ ^ ^ ^

| | | |

0 1 2 3 are the positions in the string. See who (which non-terminals) can

generate these positions.

Attempt to span position 0 thru 3.
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0 0 0 0

a 1 {S} 1 {S} 1 {S} 1

b c 2 b {S} 2 {} {S} 2 {} {S} 2

d e f 3 d e {T} 3 d {S,T} {T} 3 {S,T} {S,T} {T} 3

{S} can yield posn 0--1 and {S,T} can yield posn 1--3.

The concat of {S} and {S,T} is {SS, ST}.

Both S and T can yield ST. Neither can yield SS. Thus we mark the "1,3" "0,3" positions with {S,T}.

We can now say that S can generate the string from position 0 thru 3. Hence parsed!

5 The CFL Pumping Lemma

Basic idea: Very long string needs very tall parse tree; therefore some non-terminal along the path
repeats. Can do “switharoo” of non-terminals to pump trees!

Given any CFG G = (N, Σ, P, S), there exists a number p such that given a string w in L(G) such
that |w| ≥ p, we can split w into w = uvxyz such that |vy| > 0 (one of v or y is non-empty), |vxy| ≤ p,
and for every i ≥ 0, uvixyiz ∈ L(G).

S -> ( S ) | T | e

T -> [ T ] | T T | e.

Here is an example derivation:
S => ( S ) => (( T )) => (( [ T ] )) => (( [ ] ))

^ ^

Occurrence-1 Occurrence-2

Occurrence-1 involves Derivation-1: T => [ T ] => [ ]

Occurrence-2 involves Derivation-2: T => e

Here, the second T arises because we took T and expanded it into
[ T ] and then to [ ].

Now, the basic idea is that we can use Derivation-1 used in the first occurrence in place of
Derivation-2, to obtain a longer string:

S => (S) => ((T)) => (( [ T ] )) => (( [[ T ]] )) => (( [[ ]] ))

^ ^

Occurrence-1 Use Derivation-1 here

In the same fashion, we can use Derivation-2 in place of Derivation-1 to obtain a shorter string, as
well:
S => ( S ) => ( ( T ) ) => ( ( ) )

^

Use Derivation-2 here
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