CS 3100 — Models of Computation — Fall 2010
Notes for Lecture 15 around Assignment 6 — 10/19/2010

Topics:

Reversing CFGs

Obtaining NFA from purely right-linear CFGs

Simplifying CFGs (also related to nullability discussed on Page 76)
Chomsky normal form

CFL Pumping Lemma

Yacc

CFG to PDA: see online material against L14 (“JFLAP files”)
PDA to CFG

1 Reversing CFGs

Given a string s, let s denote the reverse of s
Given strings s and t, (st)F = tfisf?
Applying this recursively,

(stu)® = (tu)Fs? = uftfish

This idea can be applied to CFGs:

S->ABC|ODI|IEO|IFOGI| OH2

can be turned into an Sr grammar as follows:

Sr > Cr Br Ar | Dr O | OEr | Gr O Fr | 2 Hr O

2 NFA from Purely right-linear

Reversing
S->A0|B1]e
A->C11]0
B->C1]| 1
c->1]CoO

We obtain
Sr > 0Ar | 1 Br | e
Ar > 1Cr | O
Br > 1Cr | 1
Cr >1 ] 0Cr



and an NFA

ISr - 0 > Ar
ISr - 1 -> Br
Isr - e > F1
Ar - 1 -> Cr
Ar - 0 -> F2
Br -1 -> Cr
Br -1 ->F3
Cr -1 ->F4
Cr - 0 -> Cr

3 Simplifying CFGs
We can simplify this CFG as follows:
S->A1|B

A->(wA | (XC
B->(wB | (XD

W ->)
B ->e

e Notice that C,D,Y,Z are not generating symbols (they can never generate any terminal string).
Hence we can eliminate production RHS using them.

W and B are generating (W -> ) and B -> e).

X is not generating. Look at X -> ( W X. While ( is generating and W is generating, X on the
RHS isn’t generating — we are doing a “bottom-up marking.” The same style of reasoning applies
alsoto X -> ( X Z.

Even A is not generating!

While P and Q are generating, they are not reachable.

3.1 Nullability

The algorithm for a generating non-terminal is similar to the following from Page 76 for nullable
variables:
e Declare all variables (non-terminals) non-nullable.



e Repeat Go thru productions; if any has RHS empty or all entries are nullable, then mark the
LHS variable nullable

e Until there is no increase in the set of nullable variables (non-terminals).
(The book uses “variables” ; we often use “non-terminals”)

4 Chomsky Normal Form

e Get rid of all € productions.

e Get rid of unit productions.

e Make productions binary.

e Move all terminals to unit productions.

4.1 Derivation length

Derivation length for a string of length n: 2n — 1. So we can search all derivations systematically
using dynamic programming.

4.1.1 Cocke-Kasami-Younger (CKY) parsing algorithm

The CKY parsing algorithm uses dynamic programming in a rather elegant manner. Basically, given
any string, such as 0 0 1, and a Chomsky normal form grammar such as

S — ST |0

T — ST |1,

the following steps describe how we “parse the string” (check that the string is a member of the
language of the grammar):

e Consider all possible substrings of the given string of length 1, and determine all non-terminals
which can generate them.

e Now, consider all possible substrings of the given string of length 2, and determine all pairs of
non-terminals in juxtaposition which can generate them.

e Repeat this for strings of lengths 3, 4, ..., until the full length of the string has been examined.

Given string: 001

001

1
0 1 2 3 are the positions in the string. See who (which non-terminals) can
generate these positions.

Attempt to span position O thru 3.



0 0 0 0

ail {s} 1 {s} 1 {s} 1

bc 2 b {S} 2 { {s} 2 {3 {sr 2
def3 d e {T3}3 4 {s,T} {T+} 3 {S,T} {sS,T} {T} 3

{S} can yield posn 0--1 and {S,T} can yield posn 1--3.
The concat of {S} and {S,T} is {SS, STZ}.
Both S and T can yield ST. Neither can yield SS. Thus we mark the "1,3" "0,3" positions with {S,T}.

We can now say that S can generate the string from position O thru 3. Hence parsed!

5 The CFL Pumping Lemma

Basic idea: Very long string needs very tall parse tree; therefore some non-terminal along the path
repeats. Can do “switharoo” of non-terminals to pump trees!

Given any CFG G = (N, X, P, S), there exists a number p such that given a string w in L(G) such
that |w| > p, we can split w into w = uvzyz such that |vy| > 0 (one of v or y is non-empty), |vxy| < p,
and for every i > 0, w'lry'z € L(G).

S->(S8S)I|ITIle

T->[T]ITT]| e.

Here is an example derivation:
S=>(8S)=>WT)=>ITIN=>0WL TN

Occurrence-1 Occurrence-2

Occurrence-1 involves Derivation-1: T => [ T ] => [ ]
Occurrence-2 involves Derivation-2: T => e

Here, the second T arises because we took T and expanded it into
[ T]andthento [ ].

Now, the basic idea is that we can use Derivation-1 used in the first occurrence in place of
Derivation-2, to obtain a longer string;:

S=>()=> D) =>(CLTI1)=>LMTII)N = ILITN

Occurrence-1 Use Derivation-1 here

In the same fashion, we can use Derivation-2 in place of Derivation-1 to obtain a shorter string, as
well:

S=>(8)=>((T))=>(C))

Use Derivation-2 here



