CS 3100 - Models of Computation - Fall 2010 Notes for Lecture 11 on Context-Free Grammars

1 What is a CFG?

A CFG is a compact description of a context-free language CFL.
Let's get some terminology straight: Grammar versus Language.
We have already seen it: Regular expressions (the "grammar") versus regular languages (potentially infinite set of strings).

All regular languages are context-free (but not vice versa).
A CFL is not regular, but still has a simple enough structure that it can be recognized using a single-stack automaton.

They arise in programming languages and all kinds of other situations.
The syntax of regular expressions is a CFL!
The key pattern in a CFG is " $((())))$ " or " $(())()(())((())(()))$ "
In fact, all CFL strings are "grown inside out"
OK let's illustrate these facts now.

- $(\{0,1\},\{S\}, S, \emptyset)$ is a CFG
- $(\{0,1\},\{S, T\}, S, P)$ is a CFG where P is this set of rules:

S -> OT | 0
T -> 1 | | 1
Notice that this CFG is the same as the one below:
S -> 0T
S -> 0
T \rightarrow 1T
T -> 1

- $(\{0,1\},\{S, T, U\}, S, P)$ is a CFG where P is this set of rules:

S -> TU
T \rightarrow OT | 0
U -> 1U | e -- epsilon

- Strictly this is a CFG although no one would want to use it: $(\{0,1\},\{S\}, S, P)$ is a CFG where P is this set of rules:

S -> S

- Strictly this is a CFG although no one would want to use it: $(\{0,1\},\{S\}, S, P)$ is a CFG where P is this set of rules: S -> e
- Strictly this is a CFG although no one would want to use it: $(\{0,1\},\{S, T\}, S, P)$ is a CFG where P is this set of rules:

S -> e
T $\rightarrow 1$

- $G=(\{0,1\},\{S, T, U\}, S, P)$ is a CFG where P is this set of rules:

S -> TU
T \rightarrow OT | 0
U $\rightarrow 1 \mathrm{U} \mid 1$
although you should use a regular-expression whenever possible, i.e., , $0^{+} 1^{+}$.

- In G above, see how you lose control of the "balance" between 0 s and 1s. This is what regular languages do: "forget counts"
- CFGs also don't strictly count, but can match up counts! $G_{b a l}=(\{0,1\},\{S\}, S, P)$ is a CFG where P is this set of rules:

S -> 0S1 | e
grows inside out. It matches 0 with a 1 , but then once the match is seen it "forgets" the exact numbers of 0 s and 1 s .

2 Tricks to Evolve a CFG "Inside-Out"

Let's understand the "inside out" trick well, because this is how you will be designing most CFGs.
Here on, I'll merely show you the rules:

- What does this CFG generate?

S $\rightarrow 0 \mathrm{~S} 1 \mathrm{~S}|1 \mathrm{~S} 0 \mathrm{~S}| \mathrm{e}$

- Do things change if I add one more rule?

S -> 0 S $1 \mathrm{~S}|1 \mathrm{~S} 0 \mathrm{~S}| \mathrm{S} \mathrm{S} \mid \mathrm{e}$

- When asked to do "obtain a CFG for all strings where the number of zeros are twice as many as the number of 1 s ", let us consider these attempts:
- How about:

```
    S -> 0 0 1 S | 0 1 0 S | 1 0 0 S
```

- How about:

$$
S \rightarrow 0 S 0 S 1|0 S 1 S O| 1 S 0 S 0
$$

- Do we need this:

S \rightarrow S 0 S 0 S $1 \mathrm{~S}|\mathrm{~S} 0 \mathrm{~S} 1 \mathrm{~S} 0 \mathrm{~S}| \mathrm{S} 1 \mathrm{~S} 0 \mathrm{~S} 0 \mathrm{~S}$

- When asked to design a grammar for $\left\{0^{n} 1^{m} \mid n, m \geq 0\right\}$ go tell them "use a regular expression!"
- When asked to design a grammar for $G_{001}=\left\{0^{2 n} 1^{n} \mid n \geq 0\right\}$, can you tell them "use a regular expression?" Build sufficient intuitions. If sure it is not a reg language, then use the Pumping Lemma.
- A CFG for G_{001} : wrong attempt (why)?

S -> T U
T $\rightarrow 00 \mathrm{~T} \mid \mathrm{e}$
U -> 1 U |e

- The way to think of a CFG for G_{001} : you need to grow inside out! You can grow " 00.1 " inside out:

S -> 00S1 | e

- Cool fact: Any CFG over a singleton alphabet is regular. What does this CFG generate?

S -> (S) | S S | e
What does this CFG generate?
S \rightarrow (S (\| S S |e
What does this CFG generate?
S -> 0 S 0 | S S | e

- Consider $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \wedge i f(i=0)\right.$ then $\left.j=k\right\}$.
- Regular? (Naah!)
- How to pump? Not beginning with a ! Once you increase or decrease a you don't fall out of the language!
- Reverse and pump? Yes! IF original regular, reversal preserves regularity. But then can mangle reversal by pumping it out of shape. Hence original can't be regular.
- USING and ABUSING closure arguments:
- USE: Show $\{w \mid w$ has equal number of $0 s$ and $1 s\}$ is non-regular.

Hint: intersect with 0* 1*. The language then becomes what?
Can you show that language non-regular?
Then original language is regular!

- ABUSE: Show $L_{e q}=\{w \mid w$ has equal number of $0 s$ and $1 s\}$ is non-regular.

BAD Hint: intersect with 2 2* (some junk). Resulting language is EMPTY.
Empty is REGULAR.
Hence original language is regular! (Naah!)

3 Consistency and Completeness

Consistency: all the generated strings are correct according to the language. Example: Is this palindromic? (Nahh!)

```
S -> T U
T -> 0 T 1 | 1 T 0 | e
U -> 0U1 | 1 U 0 | e
```

Consistency: Is this palindromic? (Yes, but not all are captured!)
S -> 0 S 0 | 1 S 1 |e
Completeness: Fill in the missing palindromes (for instance). What are they?
Do we need to add the S S part to make this language complete with respect to $L_{e q}$?

```
S -> 0 S 1 S | 1 S 0 S | S S | e
```


4 When is Something not a CFL?

$L_{w w}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not a CFL. A proof has to wait.

5 Closure under Kleene Ops. (Groan, not under Compl.!)

CFLs are closed under all Kleene operators (union, concatenation, star).
CFLs are not closed under complementation. $L_{w w}$ is not a CFL (believe me). But its complement is (will write a CFG).

```
S -> T U | U T | Oddlen
T -> P O P
U -> Q 1 Q
P -> 0 | 1
Q -> 0 | 1
Oddlen -> P | P P Oddlen
```


6 Ambiguity and Inherent Ambiguity

Have multiple parses.
S -> E + E|E * E|num
Inherent is when every CFG is ambiguous (for some string). $\left\{0^{i} 1^{j} 2^{k} \mid i, j, k \geq 0 \wedge(i=j \vee j=k)\right\}$

