
CS 3100 – Models of Computation – Fall 2010
Notes for Lecture 11 on Context-Free Grammars

1 What is a CFG?

A CFG is a compact description of a context-free language CFL.
Let’s get some terminology straight: Grammar versus Language.
We have already seen it: Regular expressions (the “grammar”) versus regular languages (poten-

tially infinite set of strings).
All regular languages are context-free (but not vice versa).
A CFL is not regular, but still has a simple enough structure that it can be recognized using a

single-stack automaton.
They arise in programming languages and all kinds of other situations.
The syntax of regular expressions is a CFL!
The key pattern in a CFG is “(((())))” or “(())()(())((())(()))”
In fact, all CFL strings are “grown inside out”
OK let’s illustrate these facts now.
• ({0, 1}, {S}, S, ∅) is a CFG
• ({0, 1}, {S, T}, S, P) is a CFG where P is this set of rules:

S -> 0T | 0
T -> 1T | 1

Notice that this CFG is the same as the one below:
S -> 0T
S -> 0
T -> 1T
T -> 1

• ({0, 1}, {S, T, U}, S, P) is a CFG where P is this set of rules:
S -> TU
T -> 0T | 0
U -> 1U | e -- epsilon

• Strictly this is a CFG although no one would want to use it: ({0, 1}, {S}, S, P) is a CFG where
P is this set of rules:
S -> S

• Strictly this is a CFG although no one would want to use it: ({0, 1}, {S}, S, P) is a CFG where
P is this set of rules:
S -> e

• Strictly this is a CFG although no one would want to use it: ({0, 1}, {S, T}, S, P) is a CFG
where P is this set of rules:
S -> e
T -> 1

• G = ({0, 1}, {S, T, U}, S, P) is a CFG where P is this set of rules:
S -> TU
T -> 0T | 0
U -> 1U | 1

although you should use a regular-expression whenever possible, i.e.,, 0+1+.
• In G above, see how you lose control of the “balance” between 0s and 1s. This is what regular

languages do: “forget counts”
• CFGs also don’t strictly count, but can match up counts!

Gbal = ({0, 1}, {S}, S, P) is a CFG where P is this set of rules:
S -> 0S1 | e

grows inside out. It matches 0 with a 1, but then once the match is seen it “forgets” the exact
numbers of 0s and 1s.

2 Tricks to Evolve a CFG “Inside-Out”

Let’s understand the “inside out” trick well, because this is how you will be designing most CFGs.
Here on, I’ll merely show you the rules:
• What does this CFG generate?

S -> 0 S 1 S | 1 S 0 S | e

• Do things change if I add one more rule?
S -> 0 S 1 S | 1 S 0 S | S S | e

• When asked to do “obtain a CFG for all strings where the number of zeros are twice as many
as the number of 1s”, let us consider these attempts:

– How about:
S -> 0 0 1 S | 0 1 0 S | 1 0 0 S

– How about:
S -> 0 S 0 S 1 | 0 S 1 S 0 | 1 S 0 S 0

– Do we need this:
S -> S 0 S 0 S 1 S | S 0 S 1 S 0 S | S 1 S 0 S 0 S

• When asked to design a grammar for {0n1m | n, m ≥ 0} go tell them “use a regular expression!”

2

• When asked to design a grammar for G001 = {02n1n | n ≥ 0}, can you tell them “use a regular
expression?” Build sufficient intuitions. If sure it is not a reg language, then use the Pumping
Lemma.
• A CFG for G001 : wrong attempt (why)?

S -> T U
T -> 00 T | e
U -> 1 U | e

• The way to think of a CFG for G001: you need to grow inside out! You can grow “00.1” inside
out:
S -> 00S1 | e

• Cool fact: Any CFG over a singleton alphabet is regular. What does this CFG generate?
S -> (S) | S S | e

What does this CFG generate?
S -> (S (| S S | e

What does this CFG generate?
S -> 0 S 0 | S S | e

• Consider L = {aibjck | i, j, k ≥ 0 ∧ if(i = 0)then j = k}.
• Regular? (Naah!)
• How to pump? Not beginning with a! Once you increase or decrease a you don’t fall out of the

language!
• Reverse and pump? Yes! IF original regular, reversal preserves regularity. But then can mangle

reversal by pumping it out of shape. Hence original can’t be regular.
• USING and ABUSING closure arguments:

– USE: Show {w | w has equal number of 0s and 1s} is non-regular.
Hint: intersect with 0* 1*. The language then becomes what?
Can you show that language non-regular?
Then original language is regular!

– ABUSE: Show Leq = {w | w has equal number of 0s and 1s} is non-regular.
BAD Hint: intersect with 2 2* (some junk). Resulting language is EMPTY.
Empty is REGULAR.
Hence original language is regular! (Naah!)

3 Consistency and Completeness

Consistency: all the generated strings are correct according to the language. Example: Is this palin-
dromic? (Nahh!)

3

S -> T U
T -> 0 T 1 | 1 T 0 | e
U -> 0 U 1 | 1 U 0 | e

Consistency: Is this palindromic? (Yes, but not all are captured!)

S -> 0 S 0 | 1 S 1 | e

Completeness: Fill in the missing palindromes (for instance). What are they?
Do we need to add the S S part to make this language complete with respect to Leq?

S -> 0 S 1 S | 1 S 0 S | S S | e

4 When is Something not a CFL?

Lww = {ww | w ∈ {0, 1}∗} is not a CFL. A proof has to wait.

5 Closure under Kleene Ops. (Groan, not under Compl.!)

CFLs are closed under all Kleene operators (union, concatenation, star).
CFLs are not closed under complementation. Lww is not a CFL (believe me). But its complement

is (will write a CFG).

S -> T U | U T | Oddlen
T -> P 0 P
U -> Q 1 Q
P -> 0 | 1
Q -> 0 | 1
Oddlen -> P | P P Oddlen

6 Ambiguity and Inherent Ambiguity

Have multiple parses.

S -> E + E | E * E | num

Inherent is when every CFG is ambiguous (for some string). {0i1j2k | i, j, k ≥ 0 ∧ (i = j ∨ j = k)}

4

