CS 3100 - Models of Computation - Fall 2011 This assignment is worth 8% of the total points for assignments 100 points total

October 3, 2011

Assignment 4, Posted on: 9/15 Due: 9/22 Thursday 11:59pm

This assignment involves the use of JFLAP which will be illustrated in class on $9 / 15$. JFLAP is available for your use by typing on CADE machines /home/cs3100/jflap/bin/jflap. JFLAP is extremely easy to install on your own own machines, from http://www.cs.duke.edu/csed/jflap/
I'll use these conventions:

1. IF is an initial-plus-final state
2. F is a final state that's not initial
3. X where X does not start with an I or an F is neither initial nor final
4. While using NFA conventions, I'll often write states as $\{\mathrm{S}\}$ or $\{\mathrm{S} 1, \mathrm{~S} 2\}$
5. $\mathbf{1 5 \%}$ Draw the NFA for $L_{\text {div3 }}$ in JFLAP.

This is the language of all strongs that are evenly divisible by 3 when fed MSB-first.
I'm showing next states as sets of states.
IF - 0 -> $\{I F\}$
IF - 1 -> \{S1\}
S1 - 1 -> \{IF\}
S1 - 0 -> \{S2\}
S2 - 0 -> \{S1\}
S2 - 1 -> \{S2\}
2. $\mathbf{1 5 \%}$ Draw the NFA for $L_{\text {ends } 1011}$ in JFLAP.

Strings ending in 1011. These are strings of length ≥ 4.
I - $0 \rightarrow$-> $\{\mathrm{I}\}$
I - 1 -> \{I, T1\}
T1 - 0 -> T2
T2 - 1 -> T3
T3 - 1 -> F
3. $\mathbf{2 0} \%$ Draw the NFA for $L_{\text {cat } 1}$ which is defined as $L_{\text {cat } 1}=L_{\text {div3 }} L_{\text {ends1011 }}$

```
I - 0 -> {I}
I - 1 -> {S1}
S1 - 1 -> {I}
S1 - 0 -> {S2}
S2 - 0 -> {S1}
S2 - 1 -> {S2}
I - epsilon -> A1
A1 - 0 -> {A1}
A1 - 1 -> {A1, T1}
T1 - 0 -> T2
T2 - 1 -> T3
T3 - 1 -> F
```

4. $\mathbf{2 0 \%}$ Draw the NFA for $L_{\text {union } 1}$ which is defined as $L_{u n i o n ~}=L_{\text {div } 3} \cup L_{\text {ends } 1011}$
```
I - epsilon -> IF
I - epsilon -> I1
IF - 0 -> {IF}
IF - 1 -> {S1}
S1 - 1 -> {IF}
S1 - 0 -> {S2}
S2 - 0 -> {S1}
S2 - 1 -> {S2}
I1 - 0 -> {I1}
I1 - 1 -> {I1, T1}
T1 - 0 -> T2
T2 - 1 -> T3
T3 - 1 -> F
```

5. $\mathbf{1 5 \%}$ Draw the NFA for the language "second-to-last symbol is a 1 " as discussed in class (the set of strings over $\{0,1\}^{*}$ such that the second-to-last symbol is a 1).
I'm calling the language L1xx to suggest that the last two positions are don't-cares.
Formally,

$$
L 1 x x=\left\{w 1 x y \mid w \in\{0,1\}^{*} \text { and } x, y \in\{0,1\}\right\}
$$

```
I - 0 -> {I}
I - 1 -> {I, A}
A - 0,1 -> {B}
B - 0,1 -> {F}
```

6. $\mathbf{1 5 \%}$ Draw the DFA for the language "second-to-last symbol is a 1 " as discussed in class (the set of strings over $\{0,1\}^{*}$ such that the second-to-last symbol is a 1 ; it is formally captured by the language $L 1 x x$ defined above).

S - 0 -> S0
S - 1 -> S1

SO - 0 -> S00
S0 - 1 -> S01
S1 - 0 -> S10
S1 - 1 -> S11

SOO - 0 -> S000
S00 - 1 -> S001

S01 - 0 -> S010
S01 - 1 -> S011

S10 - 0 -> F100
S10 - 1 -> F101

S11 - 0 -> F110
S11 - 1 -> F111

S000 - 0 -> S000
S000 - 1 -> S001

S001 - 0 -> S010
S001 - 1 -> S011

S010 - 0 -> F100
S010 - 1 -> F101
S011 - 0 -> F110
S011 - 1 -> F111

```
F100 - 0 -> S000
F100 - 1 -> S001
F101 - 0 -> S010
F101 - 1 -> S011
F110 - 0 -> F100
F110 - 1 -> F101
F111 - 0 -> F110
F111 - 1 -> F111
```

