
CS 3100 – Models of Computation – Fall 2011 – Notes for L7

September 19, 2011

1 On the role of DFA and NFA, IMPORTANT TERMINOLOGY

• A DFA D is a five-tuple (Q,Σ, δ, q0, F), and you can look up notes5.pdf to recap what these fields are.
Pay attention to Σ for now.

The language of a DFA D is
L(D) = {w | δ̂(q0, w) ∈ F}.

Here, δ̂ is the run_dfa function.

• Of course, the language of a DFA is defined by all the strings s for which the function accepts below
returns true:

def accepts(D, q, s):
""" Checks for DFA acceptance.
"""
return run_dfa(D, q, s) in D["F"]

• A string is not accepted (or rejected) if the function accepts would return False.

• An NFA N is a structure (Q,Σ, δ, q0, F), and we explain these components below. Again, pay attention
to Σ for now.

• Given such a DFA D, only consider strings over Σ∗ with respect to this DFA. Thus, if Σ = {a, b, c},
consider all possible strings over Σ = {a, b, c} whenever doing any analysis with respect to this DFA.
Never consider any other symbol such as 0 or 1 or − or . or ¡ or ¿ or < or > or ! or whatever other symbol
you might be tempted to consider with respect to this DFA. You can’t even consider puffs of smoke signals
as your “dot” and “dash” to communicate with this DFA.

• Likewise, if {?, 0, a,→} is your Σ, then simply consider strings over these symbols

Example: ?a0?→?a may be a string considered.

However, never ever consider a string of the form 1?a0?b →?a with respect to this DFA because such a
string is not in the Σ∗ for this Σ.

• For our “Python-built DFA” we don’t allow → or ¡ or ¿ or other funny characters in the alphabet. We
are concerned with only single character symbols for DFA experimented with in Python.

• Now, given a Σ, you must check that it is a non-empty set. Never never have a DFA with an empty Σ.

1

• Of course Σ = {0} is allowed. Also Σ = {a} is allowed. This is like a DFA connected to a keyboard that
has a single key. You will never make a typing mistake!

• All of what we said about a DFA with respect to Σ are also true of an NFA. Later we will study regular
expressions; even for them all this is true.

• The “job” of a DFA or an NFA is to separate strings from Σ∗ into two bins

– Those that are accepted

– Those that are not accepted (or “rejected”)

Note that it is only strings over Σ∗ that are so classified. The universe of strings is Σ∗.

• L is a regular language if L is the language of a DFA (or equivalently, that of an NFA).

• A string that is accepted takes the DFA (or NFA as the case may be) from its initial state to the final
state (or one of its final states)

• A DFA/NFA rejecting a string is really accepting a string from the complement of L. Complementation
is done with respect to Σ∗—see the complement function in lang.py

def lcomplem(L,alph,m):
"""Complement L relative to alphabset alph. alph is also given as a set of strings.

We subtract from the "star up to m" of the alphabet alph, the language L.
"""
return star(alph,m) - L

2 On NFA

In the last set of notes, we presented a few facts:

• Regular languages are those languages specified by a DFA. Each regular language is a language (a set of
strings) L such that there exists a DFA who language L is.

• Some regular languages are easy to specify using a DFA whereas for some regular languages, their DFA
become too hard to draw out. In many of those cases, NFA prove to far easier. We give two examples
below.

We now formally introduce nondeterministic finite automata. Let Σε stand for (Σ ∪ {ε}). A nondeterministic
finite-state automaton N is a structure (Q,Σ, δ, q0, F), where:

• Q, a finite non-empty set of states;

• Σ, a finite non-empty alphabet;

• δ : Q× Σε → 2Q, a total transition function.

• q0 ∈ Q, an initial state; and

• F ⊆ Q, a finite, possibly empty set of final states.

2

Note, that the range of δ includes ∅; therefore, if for some state q, δ(q, x) = ∅, the move from state q on input
x is essentially to a “black hole”. That is, the NFA is no state at all. Since the moves of any machine are
always from a state to a state, and if the from states come from an empty set, naturally the to states also end
up being the empty set. We will formally define the language of an NFA in § 6.
NFA acceptance: An NFA N accepts a string s if any one of its runs on a string s leaves the NFA in one of
its final states F .
The language of an NFA: The language of an NFA N is all the strings it accepts.
Note on ε: Note that an NFA can take ε moves “whenever it likes” (provided such a move is available
for the NFA).

These ε are incorporated into the run in an obvious way. For example, a run of the NFA of the form

ε0101ε1ε0ε

is the same as the run of the same NFA on

010110

That is, inserting ε in a string does not alter the string.
A non-deterministic finite-state automaton (NFA) is a preferred alternative to DFA for specifying regular lan-
guages. Using an NFA, we can be sure of two things:

• For many languages, the use of an NFA can make the automaton specification exponentially more succinct.
That is, the number of states you draw and the number of transitions you draw will be vastly smaller in
number than for a DFA.

• For no language is an NFA worse than (larger than) a DFA. In fact, a DFA is a special case of an NFA
(one where there is no non-determinism). Thus no NFA needs to be bigger than an equivalent DFA.

Here are three languages whose definitions are made much easier by following the NFA route:

• An NFA for La where
La = {x | the third last symbol of x is a 1}

3

RemoveTraceThawFreezeResetStep

q4

10000

q0

10000

1
1

0
1

0 0
1

0
1

q0 q1 q2 q3 q4

• An NFA for Lb = L1L2 (L1 concatenated with L2) where

L1 = strings ending in a 1.

L2 = the language of strings with equal numbers of 01 and 10 changes.

• An NFA for Lc = L1 ∪ L2, the union of L1 and L2 which are defined above.

3 NFA simplifies construction of “Union and Concatenation lan-
guages”

More specifically, for languages defined through the Union or Concatenation operation, one can define NFAs
for the individual languages and then compose them in the obvious way to obtain the desired language.

• For a “concatenation language”,

– Connect every final state of the first NFA using a ε labeled edge to the initial state of the second
NFA.

– Make every final state of the first NFA non-final.

4

In effect, the final states of the resulting NFA are just the final states of the second NFA.

• For a “union language,” introduce a new state from which lead to the NFA of the individual languages
using ε moves. In effect, the final states of the resulting NFA are the union of the final states of the
individual NFA.

Sometimes it is dead-easy to see that some languages can be dramatically simplified. For instance, you can
rewrite the above languages as follows:

• Lb as (do it first!)1 Figure 1 shows this NFA.

• Lc as (do it first!)2 Figure 2 shows this NFA.

Note that in the JFLAP-drawn NFA, the Greek symbol λ is used in lieu of ε. They mean the
same thing. Read the JFLAP documentation for more information.

JFLAP is available on our CADE machines as /home/cs3100/jflap/bin/jflap. JFLAP is extremely easy
to install on your own own machines, from http://www.cs.duke.edu/csed/jflap/

But often we cannot so simplify languages.

• Let Ldiv3 = the set of all strings over {0, 1}∗ that are evenly divisible by 3 (when fed MSB-first).

• Let Lends1011 = the set of all strings over {0, 1}∗ ending in 1011.

Now try to simplify this language in your mind:

• Lcat1 = Ldiv3 Lends1011

• Lunion1 = Ldiv3 ∪ Lends1011

4 NFA does not help simplify Intersection Languages

However, NFAs are not helpful in rendering languages formed through intersection. For example for Le, there
is no direct way to draw an NFA.

Le = the set of all strings containing a 1011 and are evenly divisible by 3 (when fed MSB-first).
One has to painstakingly understand the language in question and draw an NFA directly. Another algorithm

that we shall study later is to build DFA for the individual languages and perform a language intersection
operation on the DFA. More on that later.

5 Illustration of NFA and DFA using JFLAP

I will demonstrate the use of JFLAP to study NFA and DFA. Assignment #4 is on the use of JFLAP.
1all strings over {0, 1}∗ (all strings drawn from< {0, 1}∗) that contain a 1.
2The complement of the language of strings that begin with a 1 and end with a 0. In other words, the complement of 1(0+1)∗0—as we would expression in a

regular-expression notation later.

5

1

λ

1

0

0

0

0

0

0

1

11

1

1

q0

q1 q2

q3 q4

q5 q6

Figure 1: Language Lb has this NFA

6

0

0

0

1

0

1

0

1

λ

1

λ

1

0

1

1

q0

q1 q2

q3 q4

q5q6

q7

Figure 2: Language Lc has this NFA

7

6 The language of an NFA

We now present the concept of the language of an NFA through Python. You may not follow it rightaway, but
give it a skim. Then come to the next section where the ideas are presented through math. Then when you
understand something better, read the Python code, play again with JFLAP, etc.

6.1 Through Python

First, import a few modules defined earlier.

from lang import *

from dfa import *

from praut import *

Many higher-order functions are kept in functools. Import that now.

from functools import reduce

def fst(p):

""" First of a pair."""

return p[0]

def snd(p):

""" Second of a pair."""

return p[1]

def fn_dom(F):

""" For functions represented as hash-maps (dicts), return their domain as a set.

"""

return {k for k in F.keys()}

def fn_range(F):

""" For functions represented as hash-maps (dicts), return their range as a set.

"""

return {v for v in F.values()}

def mk_nfa(Q, Sigma, Delta, q0, F):

"""Make an NFA, doing the consistency checks needed.

"""

assert(Sigma != {})

assert("" not in Sigma) # We don’t allow epsilon in any alphabet (except for a GNFA)

assert(q0 in Q)

assert(set(F) <= Q)

assert(fn_dom(Delta) <= product(Q, Sigma | {""}))

Delta maps state x input to sets of states...

One way to say this

assert(fn_range(Delta) <= pow(Q))

But this causes trouble as sets can’t be members of sets..

for x in list(Delta.values()):

assert(set(x) <= Q)

#

return({"Q":Q, "Sigma":Sigma, "Delta":Delta, "q0":q0, "F":F})

Here is how an NFA is made.

Q1 = {’S0’,’S1’}

8

Sigma1 = {’a’,’b’}

Notice how smoothly we can define Delta1 - exactly as in math!

Delta1 = { (’S0’, ’a’): {’S0’, ’S1’},

(’S1’, ’a’): {’S0’},

(’S1’, ’b’): {},

(’S0’, ’’) : {’S1’} }

q01 = ’S0’

F1 = {’S1’}

NFA1 = mk_nfa(Q1, Sigma1, Delta1, q01, F1)

def mktot_nfa(N):

""" Given a partially specified NFA,

make it total by transitioning to the set of states {} wherever

a move is undefined.

"""

add_delta = { (q,c) : set({}) for q in N["Q"] for c in (N["Sigma"] | {""}) if (q,c) not in N["Delta"] }

#

add_delta.update(N["Delta"])

#

return {"Q": N["Q"], "Sigma": N["Sigma"], "q0": N["q0"], "F": N["F"], "Delta": add_delta}

def prnfa(N):

"""Prints the NFA neatly.

"""

Make the NFA total before printing

Nt = mktot_nfa(N)

print("")

print("Q:", Nt["Q"])

print("Sigma:", Nt["Sigma"])

print("q0:", Nt["q0"])

print("F:", Nt["F"])

print("Delta:")

print("\t".join(map(str, Nt["Q"])))

print("--")

for c in (Nt["Sigma"] | {""}):

nxt_qs = [Nt["Delta"][(q, c)] for q in Nt["Q"]]

print("\t".join(map(str, nxt_qs)) + "\t\t" + c)

print("")

def step_nfa(N, q, c):

"""Run NFA N from state q on character c or "". Return the next state.

Step is without E-closure.

"""

assert(c in (N["Sigma"] | {""}))

assert(q in N["Q"])

We have to run it wrt the total version of the NFA. Expensive, so special case this check.

if (q,c) in N["Delta"].keys():

return N["Delta"][(q,c)]

else:

return set({})

9

#-- Eclosure version 1 ---

I leave it here for you to look at...

#

def eps_fix(set_states, chain_len, N):

if (chain_len == 0):

return set_states

else:

all_state_sets_one_eps_away = list(map(lambda s: step_nfa(N, s, ""), set_states))

basis case added to make reduction succeed

all_states_one_eps_away = reduce(lambda x, y: set(x) | set(y), all_state_sets_one_eps_away + [set()])

return eps_fix(set(all_states_one_eps_away) | set(set_states), chain_len - 1, N)

#

def eclosure(Q, N):

"""Given nfa N and a SET OF states Q, close Q, return eclosure as a set of states.

"""

return set() if Q == {} else eps_fix(Q, len(N["Delta"].items()), N)

#--

def ech(Allsofar, Previous, N):

"""Extend Allsofar until nothing new (that’s not in Previous).

"""

if (Allsofar == Previous):

return Allsofar

else:

all_state_sets_one_eps_away = list(map(lambda q: step_nfa(N, q, ""), Allsofar))

basis case added to make reduction succeed

all_states_one_eps_away = reduce(lambda x, y: set(x) | set(y), all_state_sets_one_eps_away + [set({})])

return ech(set(all_states_one_eps_away) | set(Allsofar), Allsofar, N)

def eclosure(Q, N):

"""Given nfa N and a SET OF states Q, close Q, return eclosure as a set of states.

"""

return ech(Q, set({}), N)

def ec_step_nfa(Q, c, N):

"""Return all states one "c" step away from Q (E-close before/after). i.e.,

E-close Q, run N from all those states, Eclose those.

If c is "", then se simply E-close q.

len(NFA1["Delta"].items()) is the longest chain in the NFA.. we can iterate that much.

"""

Eclosure = eclosure(Q, N)

#

all_state_sets_one_c_away = list(map(lambda s: step_nfa(N, s, c), Eclosure))

#

basis case added to make reduction succeed

all_states_one_c_away = reduce(lambda x, y: set(x) | set(y), all_state_sets_one_c_away + [set({})])

#

Eclosure_again = eclosure(all_states_one_c_away, N)

#

return Eclosure_again

def run_nfa(N, Q, s):

"""Run NFA from a set of states Q.

"""

return eclosure(Q, N) if s=="" else run_nfa(N, ec_step_nfa(Q, s[0], N), s[1:])

10

def accepts_nfa(N, q, s):

"""NFA acceptance.

"""

return (run_nfa(N, {q}, s) & N["F"]) != set({})

def accepts_nfav(N, q, s):

"""NFA acceptance - verbose version.

"""

if (run_nfa(N, {q}, s) & N["F"]) != set({}):

print("NFA accepts ’" + s + "’ by reaching " + str(run_nfa(N, {q}, s)))

return True

else:

print("NFA rejects ’" + s + "’")

return False

ecs_S0_a = ec_step_nfa({’S0’}, ’a’, NFA1)

ecs_S0_b = ec_step_nfa({’S0’}, ’b’, NFA1)

#

ecs_S1_a = ec_step_nfa({’S1’}, ’a’, NFA1)

ecs_S1_b = ec_step_nfa({’S1’}, ’b’, NFA1)

#

ec_S0 = eclosure({’S0’}, NFA1)

ec_S1 = eclosure({’S1’}, NFA1)

Q2 = {’S0’, ’S1’, ’S2’, ’S3’, ’S4’, ’S5’, ’S6’}

Sigma2 = {’0’,’1’}

Delta2 = { (’S0’, ’’) : { ’S1’ },

(’S0’, ’0’) : { ’S0’ },

(’S0’, ’1’) : { ’S0’, ’S5’ },

(’S1’, ’0’) : { ’S2’ },

(’S2’, ’0’) : { ’S3’ },

(’S2’, ’1’) : { ’S3’ },

(’S3’, ’0’) : { ’S4’ },

(’S3’, ’1’) : { ’S4’ },

(’S5’, ’0’) : { ’S6’ },

(’S5’, ’1’) : { ’S6’ } }

q02 = ’S0’

F2 = {’S4’, ’S6’}

NFA2 = mk_nfa(Q2, Sigma2, Delta2, q02, F2)

ec_S0 = eclosure({’S0’}, NFA2)

ec_S1 = eclosure({’S1’}, NFA2)

ec_S4 = eclosure({’S4’}, NFA2)

ecs_S0_0 = ec_step_nfa({’S0’}, ’0’, NFA2)

ecs_S0_1 = ec_step_nfa({’S0’}, ’1’, NFA2)

ecs_S1_0 = ec_step_nfa({’S1’}, ’0’, NFA2)

ecs_S1_1 = ec_step_nfa({’S1’}, ’1’, NFA2)

11

ecs_S2_0 = ec_step_nfa({’S2’}, ’0’, NFA2)

ecs_S2_1 = ec_step_nfa({’S2’}, ’1’, NFA2)

assert(run_nfa(NFA2, {’S0’}, ’000’) == {’S3’, ’S2’, ’S1’, ’S0’, ’S4’})

assert(run_nfa(NFA2, {’S0’}, ’00’) == {’S3’, ’S2’, ’S1’, ’S0’})

assert(run_nfa(NFA2, {’S0’}, ’0’) == {’S2’, ’S1’, ’S0’})

assert(run_nfa(NFA2, {’S0’}, ’1’) == {’S1’, ’S0’, ’S5’})

assert(run_nfa(NFA2, {’S0’}, ’11’) == {’S1’, ’S0’, ’S6’, ’S5’})

assert(run_nfa(NFA2, {’S0’}, ’101’) == {’S3’, ’S1’, ’S0’, ’S5’})

assert(accepts_nfa(NFA2, ’S0’, ’101’) == False)

assert(accepts_nfa(NFA2, ’S0’, ’111’) == True)

assert(accepts_nfa(NFA2, ’S0’, ’’) == False)

assert(accepts_nfa(NFA2, ’S0’, ’0’) == False)

assert(accepts_nfa(NFA2, ’S0’, ’00’) == False)

assert(accepts_nfa(NFA2, ’S0’, ’000’) == True)

assert(accepts_nfa(NFA2, ’S0’, ’001’) == True)

assert(accepts_nfa(NFA2, ’S0’, ’011’) == True)

assert(accepts_nfa(NFA2, ’S0’, ’100’) == False)

assert(accepts_nfa(NFA2, ’S0’, ’10’) == True)

assert(accepts_nfav(NFA2, ’S0’, ’10’) == True) # prints also

assert(accepts_nfav(NFA2, ’S0’, ’010’) == True) # prints also

assert(accepts_nfav(NFA2, ’S0’, ’010’) == True) # prints also

assert(accepts_nfav(NFA2, ’S0’, ’0100’) == False) # prints also

assert(accepts_nfav(NFA2, ’S0’, ’01000’) == True) # prints NFA accepts ’01000’ by reaching {’S3’, ’S2’, ’S1’, ’S0’, ’S4’}

6.2 Through Math

We can define the language of an NFA using the idea of Eclosure. This notion, in effect, considers all ε-laden
interpretations of strings in “one fell swoop.” That is, when asked “does this NFA accept 010110”, we must

12

consider strings of the form ε0101ε1ε0ε where a ε is snuck in wherever possible. This is precisely the idea of an
NFA being allowed to take a ε wherever possible.

6.3 The language of an NFA

The language of an NFA consists of all those sequences of symbols that can be encountered while tracing a
path from the start state to some final state. We eliminate all occurrences of ε from such sequences unless the
entire sequence consists of εs, in which case, we turn the sequence into a single3 ε.

6.4 Eclosure (also known as ε-closure)

Eclosure(q) obtains, starting from a state q, the set of states reached by an NFA traversing zero or more ε
labeled transitions. The best way to see which states are included in Eclosure(q), for any q, is to imagine the
following:

Apply a high-voltage to state q; imagine that every ε edge is a diode that conducts in the direction
of the arrow; now see which are the states that would be fatal to touch due to the high-voltage;4 all
those are in Eclosure(q).

Example: Let us obtain the Eclosure of various states in Figure 3.

• The Eclosure of state IF is IF itself. The high-voltage spreads from IF to itself.
• What is Eclosure of FA? Applying high-voltage to this state, it spreads to state FA, to B0, to A1, and

finally, to FB. For example, Eclosure(FA) = {FA,B0, A1, FB}.

Unfortunately, an intuitive definition in terms of voltages isn’t rigorous enough! Hence, we set up an alternate
definition of Eclosure(q) as follows:

• First, we need a way to compute all states which can be reached from a given state by traversing ε edges.

Let →⊆ Q ×Q be an arbitrary relation over Q. Then, given → ⊆ Q ×Q, we will define a postfix usage
of this operator, namely q → , to be the image of q under →:

q → = {x | 〈q, x〉 ∈ →}.

• Now define the relation
ε→ which is a subset of Q×Q:

ε→ = {〈q1, q2〉 | q1, q2 ∈ Q ∧ q2 ∈ δ(q1, ε)}.

• Next, define the reflexive and transitive closure of
ε→ in the usual way. Call it

ε
→∗.

Given all this, we define

Eclosure(q) = q
ε
→∗.

Here, we use the
ε
→∗ as a postfix operator. The reflexive part above is very important to ensure that q gets

included within Eclosure(q). The overall effect of employing
ε
→∗ as a postfix operator is to force all ε-only

paths to be considered.
3Please note that ε is not part of the alphabet of the NFA. Never, never, never! Same deal as with a DFA!
4An ideal non-leaky diode that does not break down.

13

Example: Redoing our example with respect to Figure 3,

Eclosure(FA) = FA
ε
→∗.

• This “grabs” state FA itself (the reflexive part of
ε
→∗ does this).

• Next, B0 enters this set, as it is one step away. In fact, B0 is in FA
ε
→1.

• Next, A1 enters this set, as it is two steps away. In fact, A1 is in FA
ε
→2.

• Finally, FB enters this set, as it is three steps away. In fact, FB is in FA
ε
→3.

• No more states enter Eclosure(FA).

As said earlier, Eclosure helps define the behavior of an NFA, as well as its language more directly. It also
helps us define the NFA to DFA conversion algorithm, as we shall see very soon.

6.5 Language of an NFA

Having defined Eclosure, we can now formally define the language of an NFA. For a string x ∈ Σ∗, define
δ̂(q0, x) of an NFA to be the set of states reached starting from Eclosure(q0) and traversing all the symbols in
x, taking an Eclosure after every step. We are, in effect, taking the image of q0 under string x, except that
we are allowing an arbitrary number of εs to be arbitrarily inserted into x. Also, we will overload Eclosure to
work over sets of states in the obvious manner, as follows:

Eclosure(S) = {x | ∃s ∈ S : x ∈ Eclosure(s)}.

This definition can also be written as

Eclosure(S) = ∪s∈S Eclosure(s).

Likewise, we overload δ to work over sets of states:

δ(S, a) = {x | ∃s ∈ S : x ∈ δ(s, a)}.

Now we define δ̂(q, x), the ‘string transfer function,’ for state q and string x inductively as follows:

δ̂(q, ε) = Eclosure(q).

For a ∈ Σ and x ∈ Σ∗,

δ̂(q, ax) = {y | ∃s ∈ Eclosure(δ(Eclosure(q), a)) : y ∈ δ̂(s, x)}.

In other words, for every symbol a in ax, we Eclose state q, “run” a from each one of these states, and Eclose
the resulting states. From each state s that results, we recursively run x. Notice that we apply Eclosure before
as well as afterward. While this is strictly redundant, it leads to definitions that are simpler and more general,
and hence easier to reason about.5 Specifically, in the definition of δ̂(q, ax), we need not assume that q is an

5Another way to set up the definitions would have been to start the NFA in the Eclosure of its start state, and at each stage
perform a δ step followed by one Eclosure step.

14

already Eclosed state, even though in the current context of its usage, we will be inductively guaranteeing that
to be the case because: (i) we begin with δ̂(q, ε) = Eclosure(q), and (ii) in δ̂(q, ax), we restore “Eclosedness.”
Finally, the language of an NFA N is

L(N) = {w | δ̂(q0, w) ∩ F 6= ∅}.

In other words, after running the NFA from state q0 with input w, we see whether any ‘token’ has reached a
final state.
A good way to intuitively understand the above definitions pertaining to NFAs is through the following ‘token

game:’

• Place a token in state q0. Spread one copy of the token to each state in Eclosure(q0).
• For each symbol a from Σ that is entered, advance each token to its set of a successors.
• Eclose the tokens and continue.
• If and when one of the tokens reaches some final state, the string seen so far is accepted.

Illustration 6.1 The NFA in Figure 3 has string 0001 in its language. First, Eclosure(IF) = {IF}. After the
first 0, the NFA is in state FA, whose Eclosure is {FA,B0, A1, FB}. After the second 0, A1 goes to FA, and
the Eclosure results in {FA,B0, A1, FB}. The same happens after the third 0. After the 1, FA and A1 go
to A1, B0 goes to FB, and the token in FB goes to ∅, resulting in {A1, FB}, which is also its own Eclosure.
This matches the definition

δ̂(q, ax) = {y | ∃s ∈ Eclosure(δ(Eclosure(q), a)) : y ∈ δ̂(s, x)}

as argued below:

• Eclosure(δ(Eclosure(IF), 0)) is {FA,B0, A1, FB}.
• We recursively process the remaining input 001 from these states to reach {A1, FB}.

15

IF

e
FA

0

FB1

A1
1 B0

e

0

1

e

e

0

e

1

0

Figure 3: An example NFA

16

	On the role of DFA and NFA, IMPORTANT TERMINOLOGY
	On NFA
	NFA simplifies construction of ``Union and Concatenation languages''
	NFA does not help simplify Intersection Languages
	Illustration of NFA and DFA using JFLAP
	The language of an NFA
	Through Python
	Through Math
	The language of an NFA
	Eclosure (also known as -closure)
	Language of an NFA

