CS 3100 — Models of Computation — Fall 2011
This assignment is worth 8% of the total points for assignments
100 points total

September 7, 2011

Assignment 3, Posted on: 9/6 Due: 9/15 Thursday 11:59pm

1. (20 points) Write a Python function recognizes(D, N) that returns all strings of length 0 < ¢ < N
recognized by the given DFA D. Assume that N > 0. Test it out on the the DFA that recognizes all
strings ending in 0101 that you constructed in Assignment 2 for N = 5. Submit the function in a file
recognizes.py as well as an ASCII record of your testing session as file recognizes_tests.out.

Solution:

The solution is below.
from math import *

from lang import *

from dfa import *

def nthnumeric(N):
"""Assume that Sigma is {a,b}. Produce the Nth string in numeric order, where N >= 0.
Idea : Given N, get b = floor(log_2(N+1)) - need that many places; what to
fill in the places is the binary code for N - (2°b - 1) with 0 as a and 1 as b.
nnn
if (N==0):
return ’’
else:
width = floor(log(N+1, 2))
tofill = int(N - pow(2, width) + 1)
relevant_binstr = bin(tofill) [2::] # strip the Ob leading string
len_to_makeup = width - len(relevant_binstr)
return "a"*len_to_makeup + homos(relevant_binstr, lambda x: ’b’ if x==’1’ else ’a’)

def listall(D, frm, S):
"""Search in the nthnumeric order from ’frm’ back through O,
exiting at -1. frm guaranteed to be >= 0. S guaranteed to be called

with set({}).
nnn
if (frm == -1):
return S
else:
nth_str = nthnumeric(frm)
if accepts(D, D["q0"], nth_str):
return listall(D, frm-1, S | { nth_str })
else:
return listall(D, frm-1, 8S)

def lang 1t_n(D, N):
"""Given a DFA D, find all strings of length <= N accepted by D.
Strings listed in numeric order are:
""" a, b, aa, ab, ba, bb, aaa, aab, ..., bba, bbb, aaaa,
In this listing, note that the ordinal position of "" is O,
of a is 1, etc. Now all strings of length <= N are obtained
by searching for strings in the nthnumeric enumeration from
27 (N+1) - 2. For instance, all strings of length 3 or less
are obtained by looking from 14 downwards in the nthnumeric
listing.
nnn
ordinal_from = pow(2, N+1) - 2
return listall(D, ordinal_from, set({}))

>>> DFA1
{°Q’: {’s1’, ’S0’}, ’q0’: ’S0’, ’F’: {’S1°}, ’Sigma’: {’a’, ’b’}, ’Delta’: {(’S0’, ’a’): ’S0’, (’S:

>>> lang_lt_n(DFA1,4)
lang_1t_n(DFA1,3)
{’abb’, ’ab’, ’bab’, ’bb’, ’aab’, ’b’, ’bbb’}

>>> DFAl.update({ ’F’ : {’S0’, ’S1’}})

>>> DFA1

DFA1

Q. {’s1’, ’S0°’}, ’q0’: ’S0’, ’F’: {’S1’, °S0°}, ’Delta’: {(’S0’, ’a’): ’S0’, (’S1’, ’a’): ’S0’,
>>>

lang_1t_n(DFA1l, 4)

lang_1t_n(DFA1, 4)

{’baba’, ’abab’, ’aa’, ’babb’, ’abbb’, ’abba’, ’bbab’, ’aaba’, ’aabb’, ’’, ’abb’, ’aaaa’, ’abaa’,
>>>

2. (40 points) Define a DFA that accepts all strings over {0,1} such that every block of four consecutive
positions contains at least two 0s. (This means: If there are four consecutive positions, Then in those
four positions, there must be at least two 0s.) Call this language Lgg. Build this DFA using the mk_dfa
call (we will supply you a working mk_dfa for this assignment). Next, use dot_dfa and print this DFA
out. Submit the PDF drawing of this DFA, as file L00.pdf. Test this DFA on 12 strings including two
(2) strings of length < 5, five (5) strings that are accepted and of length > 6 and five (5) strings that are
rejected and of length > 6. Submit an ASCII record of your testing session as file LOO_tests.out.

Solution:

Here is how you do your work!

S -0-> SO
S -1-> S1

S0 -0-> S00
S0 -1-> S01

S1 -0-> S10
S1 -1-> S11

S00 -0-> S000
S00 -1-> S001

S01 -0-> S010
S01 -1-> S011

S10 -0-> S100
S10 -1-> S101

S11 -0-> S110
S11 -1-> S111

S000 -0-> S0000
S000 -1-> S0001

S001 -0-> S0010
S001 -1-> S0011

5010 -0-> 50100
S010 -1-> S0101

S011 -0-> S0110
S011 -1-> BH

S100 -0-> 51000
5100 -1-> S1001

S101 -0-> S1010
5101 -1-> BH

5110 -0-> S1100
5110 -1-> BH
S0000 -0-> S0000
S0001 -1-> S0011
S0010

50011

50100

S0101

50110

51000

51001

51010

51100

Once they get this trick, they fan finish up!

. (20 points) Draw a DFA for Question 3 of notes5.pdf. Next, enter this DFA and generate a PDF
drawing for it. Argue why this DFA works (in about 3-4 sentences), and also use function accepts to
demonstrate that indeed it works on five (5) strings in the language and five (5) strings not in the language.
Submit your PDF as notes5_qn3_DFA.pdf and your writeup as notes5_qn3_DFA.out.

Solution:

This question asks: Define a DFA that accepts all strings over {0,1} fed LSB-first such that these strings
when interpreted according to standard binary conventions defines numbers which are evenly divisible by

3.

This is built by solving a recurrence.

N, 2°n --0--> N, 2" (n+1)

N, 2°n --1--> N + 2°n, 27 (n+1)

N%3, 2°n --1--> (N + 2°n)%3, 27(n+1)

We need to remember only (2°n)%3

N%3, (2°m)%3 --1--> (N%3 + (2"m)%3)%3, (2 * (2°n)%3)%3

(0, 1) —-0-—> (0, 2)
0, 1) —-1-—> (1, 2)

(0, 2) --0--> (0, 1)
0, 2) —-1--> (2, 1)

1, 2) —-0-—> (1, 1
(1, 2) —-1--> (0, 1)

(2, 1) —-0--> (2, 2)
(2, 1) --1--> (0, 2)

etc.

If we did MSB-first, the recurrence is easier
N ->2%N + b
N%3 —> ((2 * N%3)%3 + b)%3

. (20 points) Draw a DFA for Question 5 of notes5.pdf. Next, enter this DFA and generate a PDF
drawing for it, and submit it. Argue why this DFA works (in about 3-4 sentences), and also use function

accepts to demonstrate that indeed it works on five (5) strings in the language and five (5) strings not
in the language. Submit your PDF as notes5_qn5_DFA.pdf and your writeup as notes5_qn5_DFA.out.

Solution:

This question asks: Define a DFA for the language defined by the concatenation of the languages denoted
by DFA of the two figures in those notes. Basically it is the concatenation of “all strings ending in 1” and
“all equal 0-1 changes”. This is all strings containing a 1. Why? Because if there is no 1, then we can’t
be a concat. If there is a 1, then there is a last 1. Pick that: the rest of the strings have equal changes.
Now draw the DFA and solve easily!

