CS 3100 - Models of Computation - Fall 2011
 This assignment is worth 8% of the total points for assignments 100 points total

September 7, 2011

Assignment 3, Posted on: 9/6 Due: 9/15 Thursday 11:59pm

1. (20 points) Write a Python function recognizes (D, N) that returns all strings of length $0 \leq i \leq N$ recognized by the given DFA D. Assume that $N \geq 0$. Test it out on the the DFA that recognizes all strings ending in 0101 that you constructed in Assignment 2 for $N=5$. Submit the function in a file recognizes.py as well as an ASCII record of your testing session as file recognizes_tests.out.

Solution:

\# The solution is below.
from math import *
from lang import *
from dfa import *
def nthnumeric(N):
"""Assume that Sigma is $\{\mathrm{a}, \mathrm{b}\}$. Produce the Nth string in numeric order, where $\mathrm{N}>=0$.
Idea : Given N, get $b=$ floor (log_2($N+1$)) - need that many places; what to
fill in the places is the binary code for $N-\left(2^{\wedge} b-1\right)$ with 0 as a and 1 as b.
" " "
if ($\mathrm{N}==0$) :
return ',
else:
width $=$ floor $(\log (N+1,2))$
tofill $=\operatorname{int}(\mathrm{N}-\operatorname{pow}(2$, width $)+1)$
relevant_binstr = bin(tofill)[2::] \# strip the Ob leading string
len_to_makeup $=$ width - len(relevant_binstr)
return "a"*len_to_makeup + homos(relevant_binstr, lambda $x:$ 'b' if $x==1$ ' else 'a')
def listall(D, frm, S):
"""Search in the nthnumeric order from 'frm' back through 0,
exiting at -1 . frm guaranteed to be >=0. S guaranteed to be called

```
    with set({}).
    """
    if (frm == -1):
        return S
    else:
    nth_str = nthnumeric(frm)
    if accepts(D, D["q0"], nth_str):
            return listall(D, frm-1, S | { nth_str })
        else:
            return listall(D, frm-1, S)
def lang_lt_n(D, N):
    """Given a DFA D, find all strings of length <= N accepted by D.
    Strings listed in numeric order are:
    "", a, b, aa, ab, ba, bb, aaa, aab, ..., bba, bbb, aaaa, ...
    In this listing, note that the ordinal position of "" is 0,
    of a is 1, etc. Now all strings of length <= N are obtained
    by searching for strings in the nthnumeric enumeration from
    2^(N+1) - 2. For instance, all strings of length 3 or less
    are obtained by looking from 14 downwards in the nthnumeric
    listing.
    """
    ordinal_from = pow(2, N+1) - 2
    return listall(D, ordinal_from, set({}))
```

```
>>> DFA1
```

>>> DFA1
{'Q': {'S1', 'SO'}, 'q0': 'SO', 'F': {'S1'}, 'Sigma': {'a', 'b'}, 'Delta': {('SO', 'a'): 'SO', ('S
{'Q': {'S1', 'SO'}, 'q0': 'SO', 'F': {'S1'}, 'Sigma': {'a', 'b'}, 'Delta': {('SO', 'a'): 'SO', ('S
>>> lang_lt_n(DFA1,4)
>>> lang_lt_n(DFA1,4)
lang_lt_n(DFA1,3)
lang_lt_n(DFA1,3)
{'abb', 'ab', 'bab', 'bb', 'aab', 'b', 'bbb'}
{'abb', 'ab', 'bab', 'bb', 'aab', 'b', 'bbb'}
>>> DFA1.update({ 'F' : {'SO', 'S1'}})
>>> DFA1.update({ 'F' : {'SO', 'S1'}})
>>> DFA1
>>> DFA1
DFA1
DFA1
{'Q': {'S1', 'SO'}, 'q0': 'S0', 'F': {'S1', 'SO'}, 'Delta': {('S0', 'a'): 'SO', ('S1', 'a'): 'S0',
{'Q': {'S1', 'SO'}, 'q0': 'S0', 'F': {'S1', 'SO'}, 'Delta': {('S0', 'a'): 'SO', ('S1', 'a'): 'S0',
>>>
>>>
lang_lt_n(DFA1, 4)
lang_lt_n(DFA1, 4)
lang_lt_n(DFA1, 4)
lang_lt_n(DFA1, 4)
{'baba', 'abab', 'aa', 'babb', 'abbb', 'abba', 'bbab', 'aaba', 'aabb', '', 'abb', 'aaaa', 'abaa',
{'baba', 'abab', 'aa', 'babb', 'abbb', 'abba', 'bbab', 'aaba', 'aabb', '', 'abb', 'aaaa', 'abaa',
>>>

```
>>>
```

2. (40 points) Define a DFA that accepts all strings over $\{0,1\}$ such that every block of four consecutive positions contains at least two 0s. (This means: If there are four consecutive positions, Then in those four positions, there must be at least two 0s.) Call this language L_{00}. Build this DFA using the mk_dfa call (we will supply you a working mk_dfa for this assignment). Next, use dot_dfa and print this DFA out. Submit the PDF drawing of this DFA, as file L00.pdf. Test this DFA on 12 strings including two (2) strings of length <5, five (5) strings that are accepted and of length ≥ 6 and five (5) strings that are rejected and of length ≥ 6. Submit an ASCII record of your testing session as file L00_tests.out.

Solution:

```
Here is how you do your work!
S -0-> S0
S -1-> S1
SO -0-> S00
S0 -1-> S01
S1 -0-> S10
S1 -1-> S11
S00 -0-> S000
S00 -1-> S001
S01 -0-> S010
S01 -1-> S011
S10 -0-> S100
S10 -1-> S101
S11 -0-> S110
S11 -1-> S111
S000 -0-> S0000
S000 -1-> S0001
S001 -0-> S0010
S001 -1-> S0011
S010 -0-> S0100
S010 -1-> S0101
S011 -0-> S0110
S011 -1-> BH
```

```
S100 -0-> S1000
S100 -1-> S1001
S101 -0-> S1010
S101 -1-> BH
S110 -0-> S1100
S110 -1-> BH
S0000 -0-> S0000
S0001 -1-> S0011
S0010
S0011
S0100
S0101
S0110
S1000
S1001
S1010
S1100
Once they get this trick, they fan finish up!
```

3. (20 points) Draw a DFA for Question 3 of notes5.pdf. Next, enter this DFA and generate a PDF drawing for it. Argue why this DFA works (in about 3-4 sentences), and also use function accepts to demonstrate that indeed it works on five (5) strings in the language and five (5) strings not in the language. Submit your PDF as notes5_qn3_DFA.pdf and your writeup as notes5_qn3_DFA.out.

Solution:

This question asks: Define a DFA that accepts all strings over $\{0,1\}$ fed LSB-first such that these strings when interpreted according to standard binary conventions defines numbers which are evenly divisible by
3.

This is built by solving a recurrence.

```
N, 2^n --0--> N, 2^(n+1)
N, 2^n --1--> N + 2^n, 2^(n+1)
--
N%3, 2^n --1--> (N + 2^n)%3, 2^(n+1)
--
We need to remember only (2^n)%3
--
N%3, (2^n)%3 --1--> (N%3 + (2^n)%3)%3, (2 * (2^n)%3)%3
--
(0, 1) --0--> (0, 2)
(0, 1) --1--> (1, 2)
(0, 2) --0--> (0, 1)
(0, 2) --1--> (2, 1)
(1, 2) --0--> (1, 1)
(1, 2) --1--> (0, 1)
(2, 1) --0--> (2, 2)
(2, 1) --1--> (0, 2)
etc.
If we did MSB-first, the recurrence is easier
N -> 2*N + b
N%3 -> ((2 * N%3)%3 + b)%3
```

4. (20 points) Draw a DFA for Question 5 of notes5.pdf. Next, enter this DFA and generate a PDF drawing for it, and submit it. Argue why this DFA works (in about 3-4 sentences), and also use function
accepts to demonstrate that indeed it works on five (5) strings in the language and five (5) strings not in the language. Submit your PDF as notes5_qn5_DFA.pdf and your writeup as notes5_qn5_DFA.out.

Solution:

This question asks: Define a DFA for the language defined by the concatenation of the languages denoted by DFA of the two figures in those notes. Basically it is the concatenation of "all strings ending in 1 " and "all equal $0-1$ changes". This is all strings containing a 1 . Why? Because if there is no 1 , then we can't be a concat. If there is a 1 , then there is a last 1 . Pick that: the rest of the strings have equal changes. Now draw the DFA and solve easily!

