
CS 3100 – Models of Computation – Fall 2011 – Notes for L5

September 15, 2011

1 On DFA

A deterministic finite-state automaton (DFA) models finite-state devices. There are many real-life systems that
can be modeled using DFA; some examples are:
• C programs operating with finite memory,
• Scanners that check the syntax of tokens in a language (e.g., strings, floating-point numbers, telephone

numbers, etc.)
• Almost all board-games
• Binary decision diagrams (we will study them much later)

We will mostly study DFAs at an abstract level. We will then study how to express DFAs using regular
expressions, and automatically build them using tools such as ply.

DFA are specified through a transition graph such as in Figure 1. It starts its operation in an initial state
(in this case I). When a DFA is situated in one of its reachable states s and is fed an input string w, it advances
to a unique state as per its transition graph. Formally, a deterministic finite-state automaton D is described by
five quantities presented as a tuple, (Q,Σ, δ, q0, F ), where:

• Q, a finite nonempty set of states;

• Σ, a finite nonempty alphabet;

• δ : Q× Σ→ Q, a total transition function;

• q0 ∈ Q, an initial state; and

• F ⊆ Q, a finite, possibly empty set of final (or accepting) states.
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Figure 1: A DFA that recognizes strings over {0, 1} ending with 1
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/* Encoding of a DFA that accepts the language (0+1)*1 */

main()

{ bool state=0;

char ch;

while(1)

{ ch = getch();

switch (state)

{ case I: switch-off the green light;

switch (ch)

{ case 0 : break;

case 1 : state=F;

}

case F: switch-on the green light;

switch (ch)

{ case 0 : state=I;

case 1 : break;

}

}

}

}

Figure 2: Pseudocode for the DFA of Figure 1
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Figure 3: Multiple symbols labeling a transition in lieu of multiple transitions

For example, in Figure 1, Q = {I, F}, Σ = {0, 1}, q0 = I, F = {F}, and δ is a total function that maps
transitions as per this figure, i.e.,

{(’I’,0) : ’I’, (’I’,1) : ’F’, (’F’,0) : ’I’, (’F’,1) : ’F’}

Sometimes, it is tedious to draw out δ as a total function because most of the moves are to the “black hole”
(BH) state: states into which transitions can check in, but not check out1 In that case, please add documentation
that “moves to the BH state are not shown” or something to that effect.

One could have a DFA with multiple symbols labeling a single transition in lieu of separate transitions that
bear these symbols, as shown in Figure 3. One could have a DFA with truly unreachable states, as shown in
Figure 4. These states (states X and Y in this example) may be removed without any loss of meaning.

The DFA in Figure 1 is really encoding programs similar to the one in Figure 2. All “DFA programs” are
while(1) loop controlled switch structures. While in a certain state, a DFA decodes the current input symbol
and decides to either update its state or keep its current state (a DFA always moves; it may decide to move
back to its current state). The next input symbol is decoded in this (possibly) updated state. Whenever any

1Also called RM or Roach Motel states.
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Figure 4: A DFA with unreachable (redundant) states
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Figure 5: Another example DFA
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final state (including the IF state) is entered, the DFA turns on its green light. The green light stays on so long
as the DFA stays in one of the final state, and is turned off when it exits it. A DFA program is not allowed to
use any other variable than the single variable called state. It cannot produce any other output than shine the
green light. It appears to be programming at its simplest - yet, such humble DFAs are enormously powerful
and versatile!

The δ function of a DFA is also commonly presented as a table, with rows being states, columns being
inputs, with the final state(s) starred. For our example, we have

input

-----

state| 0 1

------------

I | I F

*F | I F

A DFA is said to accept a string s if its green-light is ‘on’ after processing that string; all other strings are
rejected by the DFA. However, note that a DFA “never stops working”; after processing any string s, it will
be in a position to process any one of the input symbols a, and may (depending on the DFA) accept or reject
that string, sa. DFAs can be thought of as string classifiers, assigning a status (accepted/rejected) for every
string within Σ∗. The set of strings accepted by a DFA is said to be its language. A DFA is said to recognize its
language (not accept its language - the term ‘accept’ is used for individual strings). Formally speaking, a DFA
is said to accept an input x ∈ Σ∗ if x takes it from q0 to one of its final states. These ideas are captured by the
following Python programs:

# Some helper functions, and Dfa operations

def fst(p):

""" First of a pair."""

return p[0]

def snd(p):

""" Second of a pair."""

return p[1]

def fn_dom(F):

""" For functions represented as hash-maps (dicts), return their domain as a set.

"""

return {k for k in F.keys()}

def fn_range(F):

""" For functions represented as hash-maps (dicts), return their range as a set.

"""

return {v for v in F.values()}

# More checks are possible perhaps... but here is most

def mk_dfa(Q, Sigma, Delta, q0, F):

"""Make a DFA with the given traits. Delta is supplied as a hash-map (dict).

"""

assert(Sigma != {})

#

# Sigma is a set of strings of length 1. This check does it in one line

assert(not(False in list(map(lambda x: len(x)==1, Sigma))))

#

# Delta must be a total function

dom = fn_dom(Delta)
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states_dom = set(map(fst,dom))

input_dom = set(map(snd,dom))

state_targ = set(fn_range(Delta))

#-- num state and input entries to match

assert(states_dom == Q)

assert(input_dom == Sigma)

#

#-- Mapping for every pair must be present

assert(len(Delta)==len(Q)*len(Sigma))

#

# Targets must be in Q and non-empty

assert((state_targ <= Q)&(state_targ != {}))

# Initial state in Q

assert(q0 in Q)

# Final states subset of Q (could be empty, could be Q)

assert(set(F) <= Q)

# If all OK, return DFA as a dict

return({"Q":Q, "Sigma":Sigma, "Delta":Delta, "q0":q0, "F":F})

# An example DFA being made

Q1 = {’S0’,’S1’}

Sigma1 = {’a’,’b’}

Delta1 = {(’S0’, ’a’): ’S0’, (’S1’, ’a’): ’S0’, (’S1’, ’b’): ’S1’, (’S0’, ’b’): ’S1’}

q01 = ’S0’

F1 = {’S1’}

DFA1 = mk_dfa(Q1,Sigma1,Delta1,q01,F1)

# Check that it’s made properly

assert(DFA1 == {’Q’: {’S1’, ’S0’}, ’q0’: ’S0’, ’F’: {’S1’}, ’Sigma’: {’a’, ’b’}, ’Delta’: {(’S0’, ’a’): ’S0’, (’S1’, ’a’): ’S0’, (’S1’, ’b’): ’S1’, (’S0’, ’b’): ’S1’}})

def mktot(D):

""" Given a partially specified DFA, make it total by transitioning to state BH wherever undefined.

"""

add_delta = { (q,c) : "BH" for q in D["Q"] for c in D["Sigma"] if (q,c) not in D["Delta"] }

#

# print("<add_delta")

# print(add_delta)

# print("add_delta>")

#

bh_moves = { ("BH", c): "BH" for c in D["Sigma"] }

#

add_delta.update(bh_moves)

#

# print(add_delta)

#

add_delta.update(D["Delta"])

#

return {"Q": D["Q"] | { "BH" }, "Sigma": D["Sigma"], "q0": D["q0"], "F": D["F"], "Delta": add_delta}

assert(mktot(DFA1) == {’Q’: {’S1’, ’S0’, ’BH’}, ’q0’: ’S0’, ’Delta’: {(’S0’, ’a’): ’S0’, (’BH’, ’a’): ’BH’, (’S1’, ’a’): ’S0’, (’S1’, ’b’): ’S1’, (’S0’, ’b’): ’S1’, (’BH’, ’b’): ’BH’}, ’Sigma’: {’a’, ’b’}, ’F’: {’S1’}})
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assert(mktot(mktot(DFA1)) == mktot(DFA1))

def prdfa(D):

"""Prints the DFA neatly.

"""

Dt = mktot(D)

# print(totdfa)

print("")

print("Q:", Dt["Q"])

print("Sigma:", Dt["Sigma"])

print("q0:", Dt["q0"])

print("F:", Dt["F"])

print("Delta:")

print("\t".join(map(str,Dt["Q"])))

print("----------------------------------------------------------------------------------------")

for c in (Dt["Sigma"]):

nxt_qs = [Dt["Delta"][(q, c)] for q in Dt["Q"]]

print("\t".join(map(str, nxt_qs)) + "\t" + c)

print("")

def prdfa_nomktot(D):

"""Prints the DFA neatly. Don’t make it total, as we suspect a total one is given...

"""

print("")

print("Q:", D["Q"])

print("Sigma:", D["Sigma"])

print("q0:", D["q0"])

print("F:", D["F"])

print("Delta:")

print("\t".join(map(str,D["Q"])))

print("----------------------------------------------------------------------------------------")

for c in (D["Sigma"]):

nxt_qs = [D["Delta"][(q, c)] for q in D["Q"]]

print("\t".join(map(str, nxt_qs)) + "\t" + c)

print("")

# Some ideas for printing obtained from Andrew Badr’s pretty printer in his DFA package

# I’ve made it so that we can pretty-print NFA also (so undefined delta moves are OK)

#

def pr_nobh(D):

"""Prints the DFA nicely - don’t list transitions to/from black-holes, i.e. BH

"""

Dt = mktot(D)

# print(totdfa)

print("")

print("Q:", Dt["Q"])

print("Sigma:", Dt["Sigma"])

print("q0:", Dt["q0"])

print("F:", Dt["F"])

print("Delta:")

print("\t".join(map(str,Dt["Q"])))

print("----------------------------------------------------------------------------------------")

for c in (Dt["Sigma"]):

nxt_qs = [Dt["Delta"][(q, c)] for q in Dt["Q"] ]
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print("\t".join(map(str, nxt_qs)) + "\t" + c)

print("")

def step_dfa(D, q, c):

"""Run DFA D from state q on character c. Return the next state.

"""

assert(c in D["Sigma"])

assert(q in D["Q"])

return D["Delta"][(q,c)]

def run_dfa(D, q, s):

"""Run DFA D from state q on string S. Return the next state. We run DFAs to run on "" also (empty).

"""

# Don’t run DFAs on empty strings

return q if s=="" else run_dfa(D, step_dfa(D, q, s[0]), s[1:])

def accepts(D, q, s):

""" Checks for DFA acceptance.

"""

return run_dfa(D, q, s) in D["F"]

Drill Problem: Define the Python function recognizes(D, n) that returns all strings of length ≤ n recognized
by the DFA D. Hint: Can you use nthnumeric to test candidate strings? How?
Drill Problem: What is wrong with trying to define a different function recognizes(D) that returns all
strings of all lengths recognized by the DFA D? What is a test you can subject D to such that you can define
such a function for all the D that passes the test?

REGULAR LANGUAGE: A language L is defined to be regular if there is a DFA D such that
L = L(D).

If L is the language of a DFA D, then when the DFA is run on any string s ∈ L, it leaves the DFA in one
of its accepting states.

Any string not in the language of the DFA D is a language in the complement of the language L. Thus,
this string is still over the same alphabet but leaves the DFA in a non-final state.

2 Examples of DFA

Unless you design many DFAs “by hand,” you will not learn to appreciate how to design them. That is precisely
what we are about to embark on.

1. Define, using set comprehension, the regular language recognized by the DFA of Figure 5.

2. For all languages defined in notes3.pdf that are regular languages, design a DFA.

3. Define a DFA that accepts all strings over {0,1} fed LSB-first such that these strings when interpreted
according to standard binary conventions defines numbers which are evenly divisible by 3.

4. Define a DFA that accepts all strings over {0,1} such that every block of five consecutive positions contains
at least two 0s.

5. Define a DFA for the language defined by the concatenation of the languages denoted by DFA of Figures 1
and 5.

7


	On DFA
	Examples of DFA

