
CS 3100 – Models of Computation – Fall 2011
Assignment 2 solution

Powerset.py Write a python function to compute the powerset of a given set or list (the function should work
for both; hint: do a list(S) inside the function). Return a list of lists.

def pow(S):
"""Powerset of a set L. Since sets/lists are unhashable, we convert the set to a list,
perform the powerset operations, leaving the result as a list (can’t convert back to a set).
pow(set([’ab’, ’bc’])) --> [[’ab’, ’bc’], [’bc’], [’ab’], []]
"""
L=list(S)
if L==[]:

return([[]])
else:

pow_rest0 = pow(L[1:])
pow_rest1 = list(map(lambda ls: [L[0]]+ls, pow_rest0))
return(pow_rest0 + pow_rest1)

MkDFA.py Define a function mk_dfa whose definition is sketched below. A DFA is represented using a dict
of the form:

{"Q":Q, "Sigma":Sigma, "Delta":Delta, "q0":q0, "F":F})

Here, Q is a non-empty set of strings (state names), Sigma is a set of non-empty single-character
strings (alphabet), q0 is a state belonging to Q, and F is a possibly non-empty set of states, and
is also a subset of Q. Delta is a total function represented as a hash-table, mapping a pair (q, c) (where
q in Q and c in Sigma) to a new state q1 where q1 is also in Q.

Implement all the checks in boldface font given above as asserts in Python. Test that all the checks are
working. Submit this terminal session of the checks happening as file MkDFATests.txt.

def fst(p):

""" First of a pair."""

return p[0]

def snd(p):

""" Second of a pair."""

return p[1]

def fn_dom(F):

""" For functions represented as hash-maps (dicts), return their domain as a set.

"""

return {k for k in F.keys()}

def fn_range(F):

""" For functions represented as hash-maps (dicts), return their range as a set.

"""

return {v for v in F.values()}

1

More checks are possible perhaps... but here is most

def mk_dfa(Q, Sigma, Delta, q0, F):

"""Make a DFA with the given traits. Delta is supplied as a hash-map (dict).

"""

assert(Sigma != {})

#

Sigma is a set of strings of length 1. This check does it in one line

assert(not(False in list(map(lambda x: len(x)==1, Sigma))))

#

Delta must be a total function

dom = fn_dom(Delta)

states_dom = set(map(fst,dom))

input_dom = set(map(snd,dom))

state_targ = set(fn_range(Delta))

#-- num state and input entries to match

assert(states_dom == Q)

assert(input_dom == Sigma)

#

#-- Mapping for every pair must be present

assert(len(Delta)==len(Q)*len(Sigma))

#

Targets must be in Q and non-empty

assert((state_targ <= Q)&(state_targ != {}))

Initial state in Q

assert(q0 in Q)

Final states subset of Q (could be empty, could be Q)

assert(set(F) <= Q)

If all OK, return DFA as a dict

return({"Q":Q, "Sigma":Sigma, "Delta":Delta, "q0":q0, "F":F})

DFA0101.py (30 points)

Design (on paper) a DFA that accepts all strings over Σ = {0, 1} that end in 0101.

Solution: Here is the solution outline with comments - after this, I provide the real details of the DFA
coding.

This is only my "sketch" as I would sketch on paper. The real DFA coding
begins after this.

-> s0 # Start from

s0 --1--> s0 # In state s0, upon a 1, stay in s0
s0 --0--> s1 # upon a 0, move to s1

s1 --0--> s1 # in s1, another 0 is not helping move along. stay in s1
s1 --1--> s2 # Move on 1 to s2

s2 --1--> s0 # Upon 1 fail back to s0
s2 --0--> s3 # upon 0, make progress to s3

s3 --0--> s1 # upon a 0, fail but don’t go clear back; go upto s1 as we can "reuse" this 0
toward a 0101

2

s3 --1--> s4 # finally go to s4

s4 --0--> s3 # fail to s3 because we can have 010101 etc, and the third 0 is a promising 0
because it may help advance 01010 to a 010101

s4 --1--> s0 # fail back to s0

Q1 = {’S0’,’S1’,’S2’,’S3’,’S4’}

Sigma1 = {’0’,’1’}

Delta1 = {(’S0’, ’0’): ’S1’,
(’S0’, ’1’): ’S0’,
(’S1’, ’0’): ’S1’,
(’S1’, ’1’): ’S2’,
(’S2’, ’1’): ’S0’,
(’S2’, ’0’): ’S3’,
(’S3’, ’0’): ’S1’,
(’S3’, ’1’): ’S4’,
(’S4’, ’0’): ’S3’,
(’S4’, ’1’): ’S0’}

q01 = ’S0’

F1 = {’S4’}

The generated DFA is

��
��

��

���

��

���

��
���

���

���
���

���

���

���

���

3

