CS 3100 — Models of Computation — Fall 2011
This assignment is worth 8% of the total points for assignments
100 points total

September 2, 2011

Assignment 2, Posted on: 8/26 Due: 9/8 midnight

Powerset.py (20 points) Write a python function to compute the powerset of a given set or list (the function
should work for both; hint: do a list(S) inside the function). Return a list of lists.

Examples:
pow({’ab’, ’bc’}) --> [[’ab’, ’bc’], [’be’], [’ab’], [1]
pow([’ab’, ’bc’]) --> [[’ab’, ’bc’], [’be’]l, [’ab’], [1]

Write the output to file Powerset.out. Test it on at least the following inputs in the given order.
The powerset of a set S is the set of all subsets of S. Think of a recursive way to compute this. Here’s
a hint: Suppose Ps is the powerset of [1,2,3]. and Ps1 the powerset of [2,3] (obtained by removing 1
from [1,2,3]. How do we produce Ps from Ps1? Think of the following questions, and you will see how
to proceed:

e Is Ps1 a subset of Ps?

e What else is there in Ps?
We will be running Powerset . py from outside, so arrange it to be a script. Once invoked, it must run and

output into the file Powerset.out the powerset of the following sets/lists. You should print each powerset
using print (which by default puts a new line after each item is printed).

Inputs:

e set()
e set(’?)
o []

o []
[’a’]

Y [)a),)b), ,C’, 7d), 7e):|

What to submit (recap): The file Powerset.py (containing the code to compute powerset, and with
also Python calls that call the powerset function with the requisite inputs, and the required __main__ line
to run it as a script).

MKDFA.py (20 points) Define a function mk_dfa whose definition is sketched below. A DFA is represented
using a dict of the form:

{"Q":Q, "Sigma":Sigma, "Delta":Delta, "q0":qO0, "F":F})

Here, Q is a non-empty set of strings (state names), Sigma is a set of non-empty single-character
strings (alphabet), qO is a state belonging to Q, and F is a possibly non-empty set of states, and
is also a subset of Q. Delta is a total function represented as a hash-table, mapping a pair (¢, c) (where
q in Q and ¢ in Sigma) to a new state g1 where g1 is also in Q.

Implement all the checks in boldface font given above as asserts in Python. Test that all the checks are
working. Submit this terminal session of the checks happening as file MkDFATests . txt.

def mk_dfa(Q, Sigma, Delta, qO0, F):
"""Make a DFA with the given traits. Delta is supplied as a hash-map (dict).

nun

Do all the checks listed in boldface fonts, above, using Python asserts.
#

If all OK, return DFA as a dict

return({"Q":Q, "Sigma":Sigma, "Delta":Delta, "qO":q0, "F":F})

What to submit: A file containing the code for MkDFA.py that we will run from outside (details are
similar to those mentioned already several times). When so run, the following commands must be executed:

Q1 = {’S0’,°S1°}

Sigmal = {’a’,’b’}

Deltal = {(’80’, ’a’): ’S0’, (’S1’, ’a’): ’S0’, (’S1’, ’b’): ’S1’, (’S0’, ’b’): ’S1’}
q01 = ’S0°

F1 = {°S1°}

mk_dfa(Q1,Sigmal,Deltal,q01,F1)

We will (or our grading script will) basically look for the final mk_dfa call printing the correct DFA dict
object on the console, and see if it is correct.

DotDFA.py (20 points) Describe all the functions in the file DotDFA.py that I wrote for your use in this
class. Your descriptions should be in the form of a reasonable help string documenting each function. Use
multiple lines to document each function. You should aim to be clear, yet succinct. I’ve provided some
help strings in some functions - not very detailed. You should simply remove my help string and/or reuse
it, but write a nice help string yourself.

Contents of file DotDFA.py

def homos(S,f):
"""String homomorphism wrt lambda f
homos("abcd",hm) --> ’bcde’ where hm = lambda x: chr((ord(x)+1) % 256)

nun

return ""

.join(map(£,S))
def dotsan_map(x):
"""Students have to think and conclude whether this is a homomorphism or not!
nnn
1f x in { ll{ll, n n’ ll)ll, |l}l| }:
return ""
elif x == ",":
return "_"
else:
return x

def dot_san_str(S):
"""Make dot like strings which are in set of states notation.

nun

return homos(S, dotsan_map)

def prDotHeader(f1):
print (r’digraph G {’, file=fl)
print (r’/* Defaults */’, file=fl)
print (r’ fontsize = 12;’, file=fl)
print (r’ ratio = compress; ’, file=fl)
print (r’ rankdir=LR; ’, file=fl)
print (r’/* Bounding box */’, file=fl)
print (r’ size = "4,4";’, file=f1)

def prNonFinalNodeName(fl, q):
print (dot_san_str(q), r’[shape=circle, peripheries=1];’, file=fl)

def prFinalNodeName(fl, q):
Could write like print (q, r’[shape=circle, peripheries=2];’, file=fl)
But am documenting use of trailing comma to suppress \n . In Python3 we supply end = ’°
print(dot_san_str(q), file=fl, end=’’) # end with no CR
print(r’ [shape=circle, peripheries=2];’, file=fl) # end with a CR

def prOrientation(fl):
print(xr’/* Orientation */’, file=fl)
print(r’orientation = landscape;’, file=fl)

def prEdges_w_bh(fl, D):
print(r’/* The graph itself */’, file=fl)
print(z’"" -> ’, dot_san_str(D["q0"]), ";", file=fl)
for QcQ in D["Delta"].items():
print(dot_san_str(QcQ[0] [0]), x> -> °,
dot_san_str(QcQ[1]), r’[label="’, dot_san_str(QcQ[0][1]), r’"];’, file=fl)

def prEdges(fl, D):
"""Suppress BH.
nun
print(r’/* The graph itself */’, file=fl)
print(z’"" -> ’, dot_san_str(D["q0"]), ";", file=fl)

for QcQ in D["Delta"].items():
if (((QeQ[0][0]1) !'= "BH") & (QcQ[1] != "BH")):
print(dot_san_str(QcQ[0I1[0]), r’> -> 7,
dot_san_str(QcQ[1]), r’[label="’, dot_san_str(QcQ[0][1]), r’"];’, file=f1l)

def prClosing(fl):
print(r’/* Unix command: dot -Tps exdfa.dot >! exdfa.ps */’, file=fl)
print(r"/* For further details, see the ‘dot’ manual */", file=f1)
print(r"}", file=fl)

def prNodeDefs_w_bh(fl, D):
print(r’/* Node definitions */’, file=fl)
print(r’ "" [shape=plaintext];’, file=fl) # Start state arrow is from "" to I
All non-accepts are single circles
for q in D["Q"] - D["F"]:
prNonFinalNodeName (f1, q)
for q in D["F"]:
prFinalNodeName (f1, q)

def prNodeDefs(fl, D):
"""Suppress BH.
nnn
print(r’/* Node definitiomns */’, file=fl)
print(r’ "" [shape=plaintext];’, file=fl) # Start state arrow is from "" to I
All non-accepts are single circles
for q in D["Q"] - D["F"]:
if (q != "BH"):
prNonFinalNodeName (f1, q)
for q in D["F"]:
prFinalNodeName (f1, q)

def dot_dfa(D, fname):
"""Generate a dot file with the automaton in it. Run the dot file through
dot and generate a ps file.

fl = open(fname, ’w’)

#-- digraph decl
prDotHeader (£f1)

#-- node names and how to draw them
prNodeDefs(f1, D)

#-- orientation - now landscape
prOrientation(f1l)

#-- edges

prEdges(f1, D)

#-- closing

prClosing(£f1)

What to submit:

e The result of feeding the call mk_dfa(Q1,Sigmal,Deltal,q01,F1) to function dot_dfa giving file
name DotDFA.dot. We will look for DotDFA.dot being written out, grading that coming out success-
fully.

e Next, execute the commands help(homos), help(dotsan_map), etc. (in sequence for all the func-
tions). These help calls must be executed when we call DotDFA.py. We will look for the help strings
coming on to the console and grade them.

e You should run the command dot -Tps DotDFA.dot > DotDFA.ps, convert the .ps file to a . pdf file,
and submit the PDF as DotDFA.pdf (Hint: you can use ps2pdf13 file.ps to generate file.pdf.)
In fact, you should accomplish this function from within the DotDFA. py invocation itself. Hint: You
can execute Unix commands from your Python file using os.system("unix command presented as
a string").

e We will look at your code, grade it, and also your DotDFA.pdf.

DFA0101.py (30 points)

Design (on paper) a DFA that accepts all strings over ¥ = {0, 1} that end in 0101. Now type in suitable
Python commands to create this DFA using the call mk_dfa(Q1,Sigmal,Deltal,q01,F1) to function
dot_dfa giving filename DFA0101.dot. Produce a pdf as described above.

We will look at your code, grade it, and also grade your final pdf.

Pascal.txt (5 points) Describe the function pascal on Page 8 of notes2.pdf in some detail (a page), explaining
how all the functions involved work.

Numeric.txt (5 points) Describe the function nthnumeric on Page 14 of notes2.pdf in some detail (a page),
explaining how all the calculations and homomorphisms involved work.

Extra Stuff: Here is a script that may help TAs grade your assignments. I enclose it to help you learn more
Python.

#!/Library/Frameworks/Python.framework/Versions/Current/bin/python3

import os
import os.path

def read_file_of_pgm_files():
filename = "FilesToRun" # default first
while True:
if os.path.exists(filename):
print(°’Found file ’ + filename)

break

else:
print(’Did not find file ’ + filename + ’. Try again’)
filename = raw_input(’Enter filename: °’)

return filename

def gradeit(asg):
fhandle = open(read_file_of_pgm_files())
Get all pgm names in fhandle, and pick out all .py files thru filter
pgm_files = list(filter(lambda fil: f£il[-3::] == ".py", fhandle.read().split(’\n’)))
print("Program files = ", pgm_files)
Get all user names
users = os.listdir(asg)
print("Users = ", users)
for user in users:
print("Grading user " + user)
for pgm in pgm_files:
print("Gonna run " + pgm + " of user " + user)
os.system(asg+"/"+user+"/"+pgm)

if __name__ == "_

_main__":

gradeit ("asgl")

