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Acceptance (ATM) is undecidable (important!): We now prove this set to be undecidable. Suppose
there exists a decider H for ATM . H expects to be given a Turing machine M and a string w. Notice that
“giving H a Turing machine” means “giving it a character string representing a Turing machine program.”

Build a program called D as follows:

− D takes a single argument M .
− As its first step, D invokes H on 〈M,M〉.1

− If H(〈M,M〉) rejects, D(〈M〉) accepts.
− If H(〈M,M〉) accepts, D(〈M〉) rejects.

Now we can ask what D(〈D〉) will result in (to preserve the clarity of our arguments, the reader is invited to
suppress any occurrence of 〈. . .〉 in the text below):

− The D(〈D〉) “call” turns into an H(〈D,D〉) call.
− Suppose H(〈D,D〉) rejects. In that case, D(〈D〉) accepts.
− But, according to the advertised behavior of H — which is that it is a decider for ATM — the fact that
H(〈D,D〉) rejects means that D is not a Turing machine that will accept 〈D〉, or that D(〈D〉) rejects!

− Suppose H(〈D,D〉) accepts. In that case, D(〈D〉) rejects.
− But, according to the advertised behavior of H — which is that it is a decider for ATM — the fact that
H(〈D,D〉) accepts means that D is a Turing machine that accepts 〈D〉, or that D(〈D〉) accepts!

Therefore, we obtain a contradiction in both cases. Hence, the claimed decider H for ATM cannot exist, or the
acceptance problem for Turing machines is undecidable.

What does this have to do with diagonalization? We can conceptually build a table of machines that
accept other machine descriptions (supposedly filled by the checker program H. Since D is a legal machine, it
must exist in this table. Now, at the spot marked with ?, H will run into a contradiction.

<M1> <M2> <M3> <M4> .. <D>

M1 Y N N Y

M2

M3

M4

..

D ?

1



Decider for A_TM

for
Decider

Halt_TM

Run
M on w

accept

reject

accept

reject

accept

reject

M

w

(a) ATM to HaltTM reduction

A BSigma*

f

f

f(A)

(b) Illustration of mapping reduction from
A to B

Halting (HaltTM) is undecidable (important!) The golden rule of reduction is: Reduce an existing
(“old”) undecidable problem to the given (“new”) problem. If we assume that the new problem is
decidable, we would conclude that the existing undecidable problem is decidable (a contradiction, Figure 1(a)
where the “new problem” is HaltTM ). By assuming that it is decidable, we can assume the existence of the
decider DHaltT M

, and using it, build a decider for ATM , the “old problem,” known undecidable; this obtains a
contradiction. Hence, DHaltT M

cannot exist.
We should not go by the English language meaning of the term “reduction” that can lead us astray. To

see why, assume this wrong direction and see what it leads to. It will lead us to prove, by contradiction, the
following futile fact: “IF the existing undecidable problem is decidable, THEN we would have shown the new
problem to be decidable.” However, this is a statement of the form “IF false, THEN assert X.” Clearly, in this
case, we cannot assert X. So we must always reduce the known undecidable problem to a new problem. Then the
new problem, if shown decidable, will trigger a contradiction. Always draw a “boxes within boxes” diagram as
in Figure 1(a). Here, the new problem is used to build a box to “solve” the old impossible-to-solve problem.

An introduction to mapping reduction: Define HaltTM = {〈M,w〉 | TM M halts on w}. We show
HaltTM to be undecidable as follows:

Suppose not; i.e., there is a decider for HaltTM . Let’s now build a decider for ATM (call it DAT M
).

DAT M
’s design will be as follows:

− DAT M
will first feed M and w to DHaltT M

, the claimed decider for HaltTM .
− If DHaltT M

goes to acceptDHaltT M
, DAT M

knows that it can safely run M on w, which it does.
− If M goes to acceptM , DAT M

will go to acceptDAT M
.

− If M goes to rejectM , or if DHaltT M
goes to rejectDHaltT M

, DAT M
will go to rejectDAT M

.

Notice that we have labeled the accept and reject states of the two machines DHaltT M
and DAT M

. After one
becomes familiar with these kinds of proofs, higher-level proof sketches are preferred. Here is such a higher-level
proof sketch. By way of contradiction, assuming DHaltT M

exists, build DAT M
. Accepts input 〈M,w〉 and run

DHaltT M
on it. If this run accepts, then we can safely (without the fear of looping) deploy M on w, and return

the accept/reject result that this run returns; else return “reject.”

1Basically, we feed 〈M〉 twice over, just to ‘please’ H that expects two arguments.
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Mapping reductions: Definition: A computable function f : Σ∗ → Σ∗ is a mapping reduction from A ⊆ Σ∗

into B ⊆ Σ∗ if for all x ∈ Σ∗, x ∈ A⇔ f(x) ∈ B.
See Figure 1(b) which illustrates the general situation that A maps into a subset denoted by f(A) of B, and

members of A map into f(A) while non-members of A map outside of B (that means they map outside of even
B \ f(A)). Also note that A and B need not be disjoint sets, although they often are. A mapping reduction
can be (and usually is) a non-injection and non-surjection; i.e., it can be many to one and not necessarily onto.
It is denoted by ≤m. By asserting A ≤m B, the existence of an f as described above is also being asserted.
Typically mapping reductions are used as follows:

• Let A be a language known to be undecidable (“old” or “existing” language).
• Let B be the language that must be shown to be undecidable (“new” language).
• Find a mapping reduction f from A into B.
• Now, if B has a decider DB , then we can decide membership in A as follows:

− On input z, in order to check if z ∈ A, find out if DB(f(z)) accepts or not. If it accepts, then z ∈ A,
and if it rejects, then z /∈ A.

• The PCP is shown undecidable by exhibiting a mapping reduction from ATM to PCP instances (“tiles”).
• Grammar ambiguity is shown undecidable through a mapping reduction from PCP instances to CFGs.
• We can see how arguments chain: ATM is reduced to PCP which in turn is reduced to CFG ambiguity.

Thus CFG ambiguity being decidable makes PCP decidable which makes ATM decidable.

Rice’s Theorem

Every non-trivial partitioning of TM codes based on the language of the TMs is undecidable. A trivial parti-
tioning is either “all TM codes” or “no TM code.” These are decidable sets. A non-trivial partitioning attempts
to classify 〈M〉 based on the language that the TM accepts. Here are some non-trivial partitionings (any such
language is undecidable):
• The set of all TMs (TM codes) that accept a particular string
• The set of all TMs whose language is regular
• The set of all TMs which accept ε
• The set of all TMs which accept a given string w

A brief overview of NP-completeness

Class NP: The class NP is those problems for which there are non-deterministic algorithms that “perform” in
polynomial time. That is, there is an NDTM that has one execution path (among the potential exponentially
branching set of non-deterministic selections) that takes a polynomial number of steps.

Alternately, an NP problem is one for which given a “certificate” (a claimed answer) which is also polyno-
mially long, a DTM can check the answer for correctness in polynomial time.

Examples of ND languages:
• SAT = {Γ | Γ is a Boolean formula that is satisfiable}. This is in NP because of either reason below:

– One can develop a SAT checker that picks one assignment for the Boolean variables (the “guess
generation phase”) and checks the formula for satisfiability.

– Given a formula and a claimed assignment, one can check whether the formula is true under the
assignment.

• 3SAT = {Γ | Γ is a 3CNF Boolean formula that is satisfiable}. This is in NP for the same reasons.
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• Clique = {G | G is a graph with a clique of size k}. This is in NP because of either reason below:
– The NDTM can generate a collection of k nodes and then check.
– One can present a collection of k nodes and design a DTM that checks whether these form a clique.

first proved
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Problem Problems
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Mapping
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P−time
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(c) Show problem in NP; then do a mapping reduction.
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phi = (X1 \/ X1 \/ X2) /\ (X1 \/ X1 \/ ~X2) /\ (~X1 \/ ~X1 \/ X2) /\ (~X1 \/ ~X1 \/ ~X2)

graph(phi) has no
4−cliques

(d) The Proof that Clique is NPH using an example formula ϕ =
(x1∨x1∨x2)∧(x1∨x1∨¬x2)∧(¬x1∨¬x1∨x2)∧(¬x1∨¬x1∨¬x2)

NP-Completeness: We don’t know whether all ND languages have deterministic polynomial time algorithms.
That is whether the language family NP and P are the same. To attack this annoying “gap” between P and
NP, scientists have come up with the hardest members of NP called NP-complete.

A language L is NP-complete if
• (In NP) L is in NP
• (NP-hard) Every other language in NP can be poly-time mapping reduced to L
Note that there are undecidable NP-hard languages (e.g. Diophantines language!). Thus we must show the

“In NP” part for any meaningful dialog in this space!!
The first problem shown to be NP-complete is 3SAT. This is done by showing that the “work of any NDTM

can be represented as Boolean formula satisfaction.”
Now for any other language (e.g. Clique), we show it NP-complete by
• Showing that Clique is in NP
• Showing that there is a mapping reduction from 3SAT to Clique
A diagram showing this mapping reduction chain is in Figure 1(c). Here, all of NPC was mapping-reduced

to 3SAT. Then problems such as Clique are shown NPC by the second mapping-reduction whose details are
illustrated in Figure 1(d). If Clique were to have a P-time algorithm, then all of NP will have a P-time
algorithm—thought to be highly unlikely!

Significance of NPC

While NP-complete problems are solved using algorithms with exponential time complexity, with well-chosen
heuristics, they often run in polynomial time. Complexity classifications are essential for theoretical CS advance
by linking problems together into complexity classes, and developing a common understanding.
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