
11

The Automaton/Logic Connection, Symbolic
Techniques

Most believe that computer science is a very young subject. In a sense,
that is true - there was the theory of relativity, vacuum tubes, radio,
and Tupperware well before there were computers. However, from an-
other perspective, computer science is at least 150 years old! Charles
Babbage1 started building his Analytic Engine in 1834 which remained
unfinished till his death in 1871. His less programmable Difference En-
gine No. 2 was designed between 1847 and 1849, and built to his spec-
ifications in 1991 by a team at London’s Science Museum. As for the
‘theory’ or ‘science’ behind computer science, George Boole published
his book on Boolean Algebra2 in 1853.

Throughout the entire 150 years (or so) history of computer science,
one can see an attempt on part of researchers to understand reasoning
as well as computation in a unified setting. This direction of thinking
is best captured by Hilbert in one of his famous speeches made in the
early 1900s in which he challenged the mathematical community with
23 open problems. Many of these problems are still open, and some
were solved only decades after Hilbert’s speech. One of the conjectures
of Hilbert was that the entire body of mathematics could perhaps be
“formalized.” What this meant is basically that mathematicians had
no more creative work to carry out; if they wanted to discover a new
result in mathematics, all they had to do was to program a computer to
systematically crank out all possible proofs, and check to see whether
the theorem whose proof they are interested in appears in one of these
proofs!

1 Apparently, Babbage is also credited with the invention of the ‘cow-catcher’ that
you see in front of locomotive engines!

2 Laws of thought. (You might add: to prevent loss of thought through loose
thought).

186 11 The Automaton/Logic Connection, Symbolic Techniques

In 1931, Kurt Gödel dropped his ‘bomb-shell.3 He formally stated
and proved the result, “Such a device as Hilbert proposed is impossi-
ble!” By this time, Turing, Church, and others demonstrated the true
limits of computing through concrete computational devices such as
Turing machines and the Lambda calculus. The rest “is history!”

11.1 The Automaton/Logic Connection

Scientists now have a firm understanding of how computation and logic
are inexorably linked together. The work in the mid 1960s, notably that
of J.R. Büchi, furthered these connections by relating branches of math-
ematics known as Presburger arithmetic and branches of logic known
as WS1S4 with deterministic finite automata. Work in the late 1970s,
notably by Pnueli, resulted in the adoption of temporal logic as a for-
mal logic to reason about concurrency. Temporal logic was popularized
by Manna and Pnueli through several textbooks and papers. Work in
the 1980s, notably by Emerson, Clarke, Kurshan, Sistla, Sifakis, Vardi,
and Wolper established deep connections between temporal logic and
automata on infinite words (in particular Büchi automata). Work in
the late 1980s, notably by Bryant, brought back yet another thread of
connection between logic and automata by the proposal of using binary
decision diagrams, essentially minimized deterministic finite automata
for the finite language of satisfying instances of a Boolean formula, as
a data structure for Boolean functions. The symbolic model checking
algorithm proposed by McMillan in the late 1980s hastened the adop-
tion of BDDs in verification, thus providing means to tackle the cor-
rectness problem in computer science. Also, spanning several decades,
several scientists, including McCarthy, Wos, Constable, Boyer, Moore,
Gordon, and Rushby, led efforts on the development of mechanical
theorem-proving tools that provide another means to tackle the cor-
rectness problem in computer science.

11.1.1 DFA can ‘scan’ and also ‘do logic’

In terms of practical applications, the most touted application do-
main for the theory of finite automata is in string processing – pattern
matching, recognizing tokens in input streams, scanner construction,
etc. However, the theory of finite automata is much more fundamental

3 Some mathematicians view the result as their salvation.
4 WS1S stands for the weak monadic second-order logic of one successor.

11.2 Binary Decision Diagrams (BDDs) 187

to computing. Most in-depth studies about computing in areas such as
concurrency theory, trace theory, process algebras, Petri nets, and tem-
poral logics rest on the student having a solid foundation on classical
automata, such as we have studied so far. This chapter introduces some
of the less touted, but nevertheless equally important, ramifications of
the theory of finite automata in computing. It shows how the theory
of DFA helps arrive at an important method for representing Boolean
functions known as binary decision diagrams. The efficient represen-
tation as well as manipulation of Boolean functions is central to au-
tomated reasoning in several areas of computing, including computer-
aided design and formal verification. In Chapter 21, we demonstrate
how exploiting the “full power” of DFAs, one can represent logics with
more power than propositional logic. In Chapter 22, we demonstrate
how automata on infinite words can help reason about finite as well as
infinite computations generated by finite-state devices. In this context,
we briefly sketch the connections between automata on infinite words
as well as temporal logics. We now turn to binary decision diagrams,
the subject of this chapter.
Note: We use ∨ and + interchangeably, depending on what looks more
readable in a given context; they both mean the same (the or function).

11.2 Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs) are bit-serial DFA for satisfying
instances of Boolean formulas.5 To better understand this characteri-
zation, consider the finite language

L1 = {abcd | d ∨ (a ∧ b ∧ c)}.

Since all finite languages (a finite number of finite strings in this case)
are regular, a regular expression describing this language can be ob-
tained by spelling out all the satisfying instances of d∨ (a∧ b∧ c). This
finite regular language is denoted by the following regular expression:

(1110+1111+0001+0011+0101+0111+1001+1011+1101)

By putting this regular expression in a file called a.b.c+d, we can use
the following grail command sequence to obtain a minimal DFA for
it, as shown in Figure 11.1(a):

5 BDDs may also be viewed as optimized decision trees. We view BDDs as DFA
following the emphasis of this book. Also note that strictly speaking, we must
say Reduced Ordered Binary Decision Diagrams or ROBDDs. We use “BDD” as
a shorthand for ROBDD.

188 11 The Automaton/Logic Connection, Symbolic Techniques

(a)

1

6

1

7

0

4

1

5

0 1 0

3

1

2

0 0 1

0

1 0 1

(b)

7

1

0

6

1

5

1

4

0 1

3

1

2

0 1

0

1 0 1

Fig. 11.1. Minimal DFAs for d ∨ (a ∧ b ∧ c) for (a) variable ordering abcd,
and (b) dabc. The edges show transitions for inputs arriving according to this
order.

cat a.b.c+d | retofm | fmdeterm | fmmin | perl grail2ps.perl -
> a.b.c+d.ps

Now consider the language that merely changes the bit-serial order in
which the variables are examined from abcd to dabc:

L2 = {dabc | d ∨ (a ∧ b ∧ c)}.

Using the regular expression

(0111+1000+1001+1010+1011+1100+1101+1110+1111)

as before, we obtain the minimal DFA shown in Figure 11.1(b). The
two minimal DFAs seem to be of the same size. Should we expect this
in general? The minimal DFAs in Figure 11.1 and Figure 11.2, are
suboptimal as far as their role in decoding the binary decision goes,
as they contain redundant decodings. For instance, in Figure 11.1(a),

11.2 Binary Decision Diagrams (BDDs) 189

(a)

5

4

0

1

1

9

0 1

7

0

8

1

6

0 1

2

0

3

1

0

0 1

(b)

0

1

0

2

1

3

0

4

1

5

0

6

1

7

0

8

1

9

0

10

1

11

0

12

1

13

0

14

1

15

0

16

0

21

0

17

01 1 1 1

18

0

19

01 1

20

0 1

Fig. 11.2. Minimal DFAs where the variable ordering matters

after abc = 111 has been seen, there is no need to decode d; however,
this diagram redundantly considers 0 and 1 both going to the accepting
state 0. In Figure 11.1(b), we can make node 6 point directly to node
0. Eliminating such redundant decodings, Figures 11.1(a) and (b) will,
essentially, become BDDs; the only difference from a BDD at that point
would be that BDDs explicitly include a 0 node to which all falsifying
assignments lead to.

Let us now experiment with the following two languages where we
shall discuss these issues even more, and actually present the drawing
of a BDD.

Linterleaved = {abcdef | a = b ∧ c = d ∧ e = f}

has a regular expression of satisfying assignments

(000000+001100+000011+110000+001111+110011+111100+111111)

and
Lnoninterleaved = {acebdf | a = b ∧ c = d ∧ e = f}

190 11 The Automaton/Logic Connection, Symbolic Techniques

01

14: f

27: d

28: b

10: f

29: d

30: b

31: e

32: d

33: b

34: d

35: b

36: e

37: c

38: b 39: b

40: e

41: b 42: b

43: e

44: c

exp4: a

Fig. 11.3. BDD for a = b ∧ c = d ∧ e = f for variable order acebdf

has

(000000+010010+001001+100100+011011+101101+110110+111111).

When converted to minimized DFAs, these regular expressions yield
Figures 11.2(a) and (b), where the size difference due to the variable
orderings is very apparent. The BDD for Figure 11.2(b) created using
the BED tool appears in Figure 11.3. The commands used to create
this BDD were:

bed> var a c e b d f % declares six variables
bed> let exp4 = (a=b) and (c=d) and (e=f) % defines the desired expn.
bed> upall exp4 % builds the BDD -
bed> view exp4 % displays the BDD

By comparing Figure 11.3 against Figure 11.2(b), one can see how, in
general, BDDs eliminate redundant decodings.6

6 The numbers inside the BDD nodes—such as the “14:” and “10:” in the nodes for
variable f—may be ignored. They represent internal numberings chosen by the
BED tool.

11.3 Basic Operations on BDDs 191

BDDs are efficient data structures for representing Boolean func-
tions and computing the reachable states of state transition systems. In
these applications, they are very often ‘robust,’ i.e., their sizes remain
modest as the computation advances. As many of these state transi-
tion systems have well over 2150 states (just to pick a large number!),
this task cannot be accomplished in practice by explicitly enumerating
the states. However, BDDs can often very easily represent such large
state-spaces by capitalizing on an implicit representation of states as
described in Section 11.3. However, BDDs can deliver this ‘magic’ only
if a “good” variable ordering is chosen.

One also has to be aware of the following realities when it comes to
using BDDs:

The problem of determining an optimal variable ordering is NP-
complete (see Chapter 20 for a definition of NP-completeness). [42];
this means that the best known algorithms for this task run in ex-
ponential worst-case time.
In many problems, as the computation proceeds and new BDDs
are built, variable orderings must be recomputed through dynamic
variable re ordering algorithms, which are never ideal and add to
the overhead.
For certain functions (e.g., the middle bits of the result of multiply-
ing two N -bit numbers), the BDD is provably exponentially sized,
no matter which variable ordering is chosen.

Even so, BDDs find extensive application in representing as well as ma-
nipulating state transition systems realized in hardware and software.
We now proceed to discuss how BDDs can be used to represent state
transition relations and also how to perform reachability analysis.

11.3 Basic Operations on BDDs

BDDs are capable of efficiently representing transition relations of
finite-state machines. In some cases, transition relations of finite-state
machines that have of the order of 2100 states have been represented us-
ing BDDs. For example, a BDD that represents the transition relation
for a 100-bit digital ripple-counter can be built using about 200 BDD
nodes.7 Such compression is, of course, achieved by implicitly represent-
ing the state space; an explicit representation (e.g., using pointer based

7 Basically, each bit of such a counter toggles when all the lower order bits are a
1, and thus all the BDD basically represents is an and function involving all the
bits.

192 11 The Automaton/Logic Connection, Symbolic Techniques

data structures) of a state-space of this magnitude is practically impos-
sible. Given a transition relation, one can perform forward or backward
reachability analysis. ‘Forward reachability analysis’ is the term used
to describe the act of computing reachable states by computing the
forward image (“image”) of the current set of states (starting from the
initial states). Backward reachability analysis computes the pre-image
of the current set of states. One typically starts from the current set of
states violating the desired property, and attempts to find a path back
to the initial state. If such a path exists, it indicates the possibility of
a computation that violates the desired property.

Each step in reachability analysis takes the current set of states
represented by a BDD and computes the next set of states, also rep-
resented by a BDD. It essentially performs a breadth-first traversal,
generating each breadth-first frontier in one step from the currently
reached set of states. The commonly used formulation of traversal is in
terms of computing the least fixed-point as explained in Section 11.3.2.
When the least fixed-point is reached, one can query it to determine

the overall properties of the system. One can also check whether desired
system invariants hold in an incremental fashion (without waiting for
the fixed-point to be attained) by testing the invariant after each new
breadth-first frontier has been generated. Here, an invariant refers to
a property that is true at every reachable state.

We will now take up these three topics in turn, first illustrating how
we are going to represent state transition systems.

11.3.1 Representing state transition systems

!b b

Fig. 11.4. Simple state transition system (example SimpleTR)

We capture transition systems by specifying a binary state transi-
tion relation between the current and next states, and also specifying
a predicate capturing the initial states. If inputs and outputs are to
be modeled, they are made part of the state vector. Depending on the
problem being modeled, we may not care to highlight which parts of
the state vector are inputs and which are outputs. In some cases, the
entire state of the system will be captured by the states of inputs and

11.3 Basic Operations on BDDs 193

outputs. Figure 11.4 presents an extremely simple state transition sys-
tem, called SimpleTR. Initially, the state is 0. Whenever the state is
0, it can become 1. When it is 1, it can either stay 1 or become 0.
These requirements can be captured using a single Boolean variable b
representing the current state, another Boolean variable b

′
represent-

ing the next state,8 and an initial state predicate and a state transition
relation involving these variables, as follows:

The initial state predicate for SimpleTR is λb.¬b, since the initial
state is 0. Often, instead of using the lambda syntax, initial state
predicates are introduced by explicitly introducing a named initial
state predicate I and defining it by an equation such as I(b) = ¬b.
For brevity,9 we shall often say “input state represented by ¬b.”
The state transition relation for SimpleTR is λ(b, b

′
).¬bb

′
+ bb

′
+

b¬b
′
, where each product term represents one of the transitions.

The values of b and b
′

for which this relation is satisfied represent
the present and next states in our example. In other words,
– a move where b is false now and true in the next state is repre-

sented by ¬bb
′
.

– a move where b is true in the present and next states is repre-
sented by bb

′
.

– finally, a move where b is true in the present state and false in
the next state is represented by b¬b

′
.

This expression can be simplified to λ(b, b
′
).(b + b

′
). The above re-

lation can also written in terms of a transition relation T defined as
T (b, b

′
) = b + b

′
. We shall hereafter say “transition relation b + b

′
.”

Notice that this transition relation is false for b = 0 and b
′

= 0,
meaning there is no move from state 0 to itself (all other moves are
present).

11.3.2 Forward reachability

The set of reachable states in SimpleTR starting from the initial state
¬b can be determined as follows:

Compute the set of states in the initial set of states.
Compute the set of states reachable from the initial states in n steps,
for n = 1, 2,

8 The ‘primed variable’ notation was first used by Alan Turing in one of the very
first program proofs published by him in [89].

9 Syntactic sugar can cause cancer of the semi-colon – Perlis

194 11 The Automaton/Logic Connection, Symbolic Techniques

In other words, we can introduce a predicate P such that a state x is in
P if and only if it is reachable from the initial state I through a finite
number of steps, as dictated by the transition relation T . The above
recursive recipe is encoded as

P (s) = (I(s) ∨ ∃x.(P (x) ∧ T (x, s))).

This formula says that s is in P if it is in I, or there exists a state x
such that x is in P , and the transition relation takes x to s.
Rewriting the above definition, we have

P = λs.(I(s) ∨ ∃x.(P (x) ∧ T (x, s)))).

Rewriting again, we have

P = (λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))) P.

In other words, P is a fixed-point of

λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s)))).

Let us call this Lambda expression H:

H = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s)))).

In general, H can have multiple fixed-points. Of these, the least fixed-
point represents exactly the reachable set of states, as next explained
in Section 11.3.3.

11.3.3 Fixed-point iteration to compute the least fixed-point

As shown in Section 6.1, the least fixed-point can be obtained by “bot-
tom refinement” using the functional obtained from the recursive defi-
nition. In the same manner, we will determine P , the least fixed-point
of H, by computing its approximants that, in the limit, become P . Let
us denote the approximants P0, P1, P2, We have P0 = λx.false, the
“everywhere false” predicate. The next approximation to P is obtained
by feeding P0 to the “bottom refiner” (as illustrated in Section 6.1):

P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P0

which becomes λs.I(s). This approximant says that P is a predicate
true of s whenever I(s). While this is not true (P must represent the
reachable state set and not the initial state alone), it is certainly a bet-
ter answer than what P0 denotes, which is that there are no states in
the reachable state set! We now illustrate all the steps of this computa-
tion, taking SimpleTR for illustration. We use the abbreviation of not
showing the lambda abstracted variables in each step.

11.3 Basic Operations on BDDs 195

I = λb.¬b.
T = λ(b, b

′
). (b + b

′
).

P0 = λs.false, which encodes the fact that “we’ve reached nowhere
yet!”
P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P0.
This simplifies to P1 = I, which is, in effect, an assertion that we’ve
“just reached” the initial state, starting from P0.
Let’s see the derivation of P1 in detail. Expanding T and P0, we
have
P1 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ (x + s)))) (λx.false).
The above simplifies to ¬b.
By this token, we are expecting P2 to be all states that are zero or
one step away from the start state. Let’s see whether we obtain this
result.
P2 = λG.(λs.(I(s) ∨ ∃x.(G(x) ∧ T (x, s))))P1.
= λs.(¬s ∨ ∃x.(¬x ∧ (x + s))).
= λs.1.
This shows that the set of states reached by all the breadth-first
frontiers (combined) that are zero and one step away from the
start state, includes every state. Another iteration would not change
things; the10 least fixed-point has been reached.

BED Commands for SimpleTR:

The BED commands given in Figure 11.5 compute the reachable set of
states using forward reachability in our example. We can see that P2,
the least fixed-point, is indeed true — namely, the characteristic predi-
cate for the set of all states. (Note: In BED, the primed variables must
be declared immediately after the unprimed counterparts). In addition
to the explicit commands to calculate the least fixed-point, BED also
provides a single command called reach. Using that, one can calculate
the least fixed-point in one step. In our present example, RS and P2 end
up denoting the BDD for true.

let RS = reach(I,T)
upall RS
view RS

Section 11.3.4 discusses another example where the details of the fixed-
point iteration using BED are discussed.

10 We do not discuss many of the theoretical topics associated with computing fixed-
points in the domain of state transition systems — such as why least fixed-points
are unique, etc. For details, please see [20].

196 11 The Automaton/Logic Connection, Symbolic Techniques

var b bp % Declare b and b’
let I = !b % Declare init state
let t1 = !b and bp % 0 --> 1
upall t1 % Build BDD for it
view t1 % View it
let t2 = b and bp % 1 --> 1
let t3 = b and !bp % 1 --> 0
let T = t1 or t2 or t3 % All three edges
upall T % Build and view the BDD
view T %

let P0 = false
upall P0
view P0

let P1 = I or ((exists b. (P0 and T))[bp:=b])
upall P1
view P1

let P2 = I or ((exists b. (P0 and T))[bp:=b])
upall P2
view P2

0 1

P0: b

P0

01

P0: b

P1: a

P1

1

P2, the least fixed-point

Fig. 11.5. BED commands for reachability analysis on SimpleTR, and the
fixed-point iteration leading up to the least fixed-point that denotes the set
of reachable states starting from I

Why Stabilization at a Fixed-Point is Guaranteed

In every finite-state system modeled using a finite-state Boolean transi-
tion system, the least fixed-point is always reached in a finite number of
steps. Let us try to argue this fact first using only a simple observation.
The observation is that all the Boolean expressions generated during
the course of fixed-point computation are over the same set of vari-

11.3 Basic Operations on BDDs 197

ables. Since there are exactly 22N
Boolean functions over N Boolean

variables (see Illustration 4.5.2), eventually two of the approximants in
the fixed-point computation process will have to be the same Boolean
function. However, this argument does not address whether it is pos-
sible to have “evasive” or “oscillatory” approximants Pi, Pi+1, . . . , Pj

such that i $= j and Pj = Pi. If this were possible, it would be possible
to cycle through Pi, . . . , Pj without ever stabilizing on a fixed-point.
Fortunately, this is not possible! Each approximant Pi+1 is more de-
fined than the previous approximant Pi, in the sense defined by the
implication lattice defined in Illustration 4.5.3. With this requirement,
the number of these ascending approximants is finite, and one of these
would be the least fixed-point. See Andersson’s paper [7] for additional
examples of forward reachability. The book by Clarke et.al. [20] gives
further theoretical insights.

11.3.4 An example with multiple fixed-points

Consider the state transition system in Figure 11.6 with initial state s0
(called MultiFP). The set of its reachable states is simply {s0} (and is
characterized by the formula a∧ b), as there is no reachable node from
s0. Now, a fixed-point iteration beginning with the initial approximant
for the reachable states set to P0 = false will converge to the fixed-
point a ∧ b. What are the other fixed-points one can attain in this
system? Here they are:

With the initial approximant set to {s0,s1}, which is characterized
by b, the iteration would reach the fixed-point of a ∨ b, which char-
acterizes {s0,s1,s2}.
Finally, we may iterate starting from the initial approximant be-
ing 1, corresponding to {s0,s1,s2,s3}. The fixed-point attained in
this case is 1, which happens to be the greatest fixed-point of the
recursive equation characterizing reachable states.

Hence, in this example, there are three distinct fixed-points for the
recursive formula defining reachable states. Of these, the least fixed-
point is a∧b, and truly characterizes the set of reachable states; a∨b is
the intermediate fixed-point, and 1 is the greatest fixed-point. It is clear
that (a∧ b) ⇒ (a∨ b) and (a∨ b) ⇒ 1, which justifies these fixed-point
orderings. Figure 11.6 also describes the BED commands to produce
this intermediate fixed-point.

198 11 The Automaton/Logic Connection, Symbolic Techniques

var a ap b bp

let T = (a and b and ap and bp) or /* S0 -> S0 */
(!a and b and !ap and bp) or /* S1 -> S1 */
(a and !b and ap and !bp) or /* S2 -> S2 */
(!a and !b and !ap and !bp) or /* S3 -> S3 */
(!a and b and ap and !bp) or /* S1 -> S2 */
(a and !b and !ap and bp) or /* S2 -> S1 */
(!a and b and ap and bp) or /* S1 -> S0 */
(a and !b and ap and bp) /* S2 -> S0 */

upall T
view T /* Produces BDD for TREL ’T’ */

let I = a and b
let P0 = b
let P1 = I or ((exists a. (exists b. (P0 and T)))[ap:=a][bp:=b])

upall P1
view P1

 {b}
s1

 {a,b}

 {a}

s2

s0

s3
Transition System MultiFP

0 1

P0: b

P0

01

P0: b

P1: a

P1

Fig. 11.6. Example where multiple fixed-points exist. This figure shows at-
tainment of a fixed-point a ∨ b which is between the least fixed-point of a ∧ b
and the greatest fixed-point of 1. The figure shows the initial approximant P0
and the next approximant P1

11.3.5 Playing tic-tac-toe using BDDs

What good are state-space traversal techniques using BDDs? How does
one obtain various interesting answers from real-world problems? While
we cannot answer these questions in detail, we hope to leave this chapter
with a discussion of how one may model a game such as tic-tac-toe and,
say, compute the set of all draws in one fell swoop. Following through
this example, the reader would obtain a good idea of how to employ

11.3 Basic Operations on BDDs 199

mathematical logic to specify a transition system through constraints,
and reason about it. We assume the reader knows the game of tic-tac-
toe (briefly explained in the passing).

Modeling the players and the board:

We model two players, A and B. The state of the game board is modeled
using a pair of variables ai,j, bi,j (we omit the pairing symbols 〈〉 for
brevity) for each square i, j where i ∈ 3 and j ∈ 3. We assume that
player A marks square i, j with an o, by setting ai,j and resetting
bi,j, while player B marks square i, j with an x, by resetting ai,j and
setting bi,j. We use variable turn to model whose turn it is to play
(with turn = 0 meaning it is A’s turn). The state transition relation
for each square will be specified using the four variables ai,j, ai,jp, bi,j,
and bi,jp. We model the conditions for a row or column remaining the
same, using predicates samerowi and samecoli. We define nine possible
moves for both A and for B. For example, M00 model’s A’s move into
cell 0, 0; Similarly, we employ N00 to model B’s move into cell 0, 0, and
so on for the remaining cells. The transition relation is now defined as a
disjunction of the Mi,j and Ni,j moves. We now capture the constraint
atmostone that says that, at most one player can play into any square.
We then enumerate the gameboard for all possible wins and draws. In
the world of BDDs, these computations are achieved through “symbolic
breadth first” traversals. We compute the reachable set of states, first
querying it to make sure that only the correct states are generated.
Then we compute the set of states defining draw configurations. The
complete BED definitions are given in Appendix B.

Chapter Summary

This chapter briefly reviewed the history of mathematical logic and
pointed out the fact that in the early days of automata theory, math-
ematical logic and automata were discussed in a unified setting. This
approach has immense pedagogical value which this book tries to re-
store to some extent. A practitioner who works on advanced hard-
ware/software debugging method needs to know both of these topics
well. For instance, automata theory has, traditionally, been considered
an essential prerequisite for an advanced class on compilation. How-
ever, recent publications in systems/compilers (e.g., [121]) indicate the
central role played by BDDs (see below) and related notions in math-
ematical logic.

We then discuss how Boolean formulas can be represented in a
canonical fashion using the so-called ‘reduced ordered binary decision

200 11 The Automaton/Logic Connection, Symbolic Techniques

diagrams,’ or “BDDs” for short. We then present how finite-state ma-
chines can be represented and manipulated using BDDs. We show how
reachable states starting from a set of start states can be computed
using forward reachability, by using the notion of fixed-points intro-
duced in Chapter 6. We finish the chapter with an illustration of how
the game of tic-tac-toe may be modeled using BDDs, and how a tool
called BED may be used to compute interesting configurations, such as
all the draw positions, all possible win positions, etc.

BDDs are far richer in scope and application than we have room to
elaborate here. The reader is referred to [14, 13] for an exposition of how
BDDs are used in hardware and software design, how BDDs may be
combined using Boolean operations through the apply operator, etc. An
alternate proof of canonicity of BDDs appears in [14]. Our presentation
of BDDs as automata draws from [22], and to some extent from [111].

Exercises

11.1. Similar to Figure 11.3, draw a BDD for all 16 Boolean func-
tions over variables x and y. (Some of these functions are λ(x, y).true,
λ(x, y).false, λ(x, y).x, λ(x, y).y, etc. Down this list, you have more
“familiar” functions such as λ(x, y).nand(x, y), and so on. Express these
functions without the “lambda” part in BED syntax, and generate the
BDDs using BED.)

11.2.
1. Obtain an un-minimized DFA (in the form of a binary tree) for the

language
L = {abc | a ⇒ b ∧ c}

picking the best variable ordering (in case two variable orderings
are equal, pick the one that is in lexicographic order). Show the
black-hole state also.

2. Minimize this DFA, and then show the additional steps that cast
the minimized DFA into a BDD.

11.3. Consider the examples given in Figure 11.2. Construct similar
examples for the addition operation. More specifically, consider the bi-
nary addition of two unsigned two-bit numbers a1a0 and b1b0, resulting
in answer c2c1c0. Generate a BDD for the carry output bit, c2. Choose
a variable ordering that minimizes the size of the resulting BDD and
experimentally confirm using BED.

11.4. Repeat Exercise 11.3 to find out the variable ordering that max-
imizes the BDD size.

11.3 Basic Operations on BDDs 201

11.5. Represent the behavior of a nand gate, under the inertial delay
model, as a state transition system. Encode this transition system using
a BDD. Here are some general details on how to approach this problem.

The behavior of an inverter can be modeled using a pair of bits
representing its input and output. (For a nand gate, we will need to
employ three bits.) In the transport delay model, every input change,
however short, is faithfully copied to the output, but after a small delay.
There is another delay model called the inertial delay model in which
“short” pulses may not make it to the output.

The behavior of an inverter under these delay models are shown in
figures (a) and (b) below.

00 01

1110

Initial inverter state

Input changes to a 1
Output has not changed

quiescent.
inverter is
and the
transitions
The output

Input
changes
and the
inverter is
in a transient
state
again

The output
transitions
and the
inverter is
quiescent.

(a)

Input changes.
Inverter is
in a transient state.
However the input
can be withdrawn
nullifying the
scheduled output
change.

Input changes.
Inverter is
in a transient state.
However the input
can be withdrawn
nullifying the
scheduled output
change.

00 01

1110

Initial inverter state

quiescent.
inverter is
and the
transitions
The output

The output
transitions
and the
inverter is
quiescent.

(b)

11.6. Draw a BDD for the transition relation of a two-bit binary
counter with output bits a1a0 for initial state 00, counting in the usual
0, 1, 2, 3 order. Repeat for a two-bit gray-code counter that counts 00,
01, 11, 10, and back to 00.

11.7.
1. With respect to the state transition relation of Figure 11.6(a), iden-

tify all the fixed-points of the recursive equation for reachability.
2. Given a state transition system (say, as a graph, as in Figure 11.6(a)),

what is a general algorithm to determine the number of fixed-points
of its recursive equation for reachability?

11.8. Consider a three-bit shift register based counter with the indi-
cated next-state relation for its three bits:

202 11 The Automaton/Logic Connection, Symbolic Techniques

next(a) = b ; next(b) = c ; next(c) = not(and(a,b,c))

c b a

1. Represent the next-state relation of this counter using a single
ROBDD. Choose a variable ordering that minimizes the size of your
ROBDD and justify your choice.

2. Compute the set of all reachable states using forward reachability
analysis, using the reach command, starting at state 000.

3. Justify the correctness of the answer you obtain. The answer you
obtain must be a Boolean formula over a, b, c. Show that this for-
mula is satisfied exactly for those states reachable by the system.

11.9. A three-bit Johnson counter11 consists of a three-bit shift register
where the final Q output is connected to the first D input. Starting
from a reset state of 000, this counter will go through the sequence
100, 110, 111, 011, 001, and back to 000. For this counter, repeat what
Exercise 11.8 asks.

11.10. Using BED, determine the shortest number of steps to win in
Tic-Tac-Toe. Appendix B has a full description of the problem encod-
ing.

11.11. Check two conjectures concerning Tic-Tac-Toe, using BED:
(i) if a player starts by marking the top-left corner, he/she may lose;
(ii) if a player starts by marking the middle square, he/she may win.

11.12. Construct an example with four distinct fixed-points under for-
ward reachability, and verify your construction similar to that explained
in Figure 11.6.

11.13. Encode the Man-Wolf-Goat-Cabbage problem using BDDs. In
this problem, a man has to carry a wolf, goat, and cabbage across a
river. The man has to navigate the boat in each direction. He may
carry no more than one animal/object on the boat (besides him) at a
time. He must not leave the wolf and goat unattended on either bank,

11 Named after Emeritus Prof. Bob Johnson, University of Utah.

11.3 Basic Operations on BDDs 203

nor must he leave the goat and cabbage unattended on either bank.
The number of moves taken is to be minimal. Use appropriate Boolean
variables to model the problem.

