CS 3100 - Models of Computation - Fall 2011
 Assignment 11 Solutions

1. $(\mathbf{2 0 \%})$ Write a proof, from first principles (by building the D function) for $H^{\prime} \operatorname{lt}_{T M}$ being undecidable. Halt $_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ that halts on $w\}$. Follow the structure of arguments given on Page 1 of http://www.eng.utah.edu/~cs3100/lectures/l27/notes27.pdf.
```
* Suppose there is a decider "H" for Halt_TM.
* H(M,w) accepts if M will halt on w, and rejects otherwise.
* Derive a contradiction as follows. Define a machine D
* D(M) {
    if H(M,M) ACCEPTS, -- i.e. M halts on M
        then LOOP -- D rejects M
        else ACCEPT -- D accepts M when M does not halt on M
    }
* Now does D halt on D? I.e. does D(D) halt or loop?
* D(D) = H(D,D)
    - if H(D,D) accepts, i.e. D halts on D, then D loops on D
    - if H(D,D) rejects, i.e. D loops on D, then D halts on D
```

* The contradiction is complete. Hence H cannot exist.

2. $\mathbf{(2 0 \%}$) Write a detailed mapping reduction proof from Halt $_{T M}$ to $A_{T M}$, showing details similar to those in Figure (a), Page 2, http://www.eng.utah.edu/~cs3100/lectures/127/notes27.pdf.

* Given an M and w, make a copy of M (calling it M'), and then change every accept state to a non-a state, and vice versa.
* Now, given A_TM, build a decider for Halt_TM as follows:
- Feed M,w to one copy of $A_{-} T M$, calling this $A_{-} T M ' s$ outputs a1 and r1
- Feed M',w to another copy of $A_{-} T M$, calling this $A_{-} T M ' s$ output a2 and r2
- Now what truth-tables are possible?

```
a1 r1 a2 r2 Halt_TM_a Halt_TM_r
a1r-------------------------
0
1
0
```

3. Explain what the sets A and B of Figure (b) are for these proofs. Write out the "if and only if" style proof "punchline" (e.g. $x \in A$ if and only if $f(x) \in B$; hence a solver for B would solve A) to make sure you understand what is going on. You can get ideas on how to write from Page 2.

- $(5 \%) A_{T M} \leq_{m} P C P$.

We build the mapping reduction in such a way that
M,w in $A_{-} T M$ if and only if Puzzle_\{M,w\} has a solution.

- $(5 \%) P C P \leq_{m} C F G_{a m b}$. Here, $C F G_{a m b}$ is the language of CFG encodings that are ambiguous.

Here, we build a mapping reduction in such a way that
P in Solvable_PCPs if and only if $C F G _\{P\}$ is unambiguous.
4. $\mathbf{(4 0 \%}$) Encode the following Lewis Carroll puzzle using the DDCal tool and find a proof. You may have to strengthen the given conditions. Thoroughly explain how BDDs helped you solve this puzzle (one-page description).

I'll help you by giving a template, below.

```
# A puzzle by Lewis Carroll :
#
# From the premises
#
#(a) None of the unnoticed things, met with at sea, are mermaids.
#
#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
#
#(c) I have never met with anything worth remembering, when on a voyage.
#
#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
#
# Prove that I have never met with a mermaid at sea
# N = it is noticed, M = it is a mermaid, L = entered in log,
# R = worth remembering, I = I have met with it at sea, T = met at sea
# First specify the desired variable ordering. DDcal can later reorder
```

```
var = T*N*M*L*R*I
#(a) None of the unnoticed things, met with at sea, are mermaids.
A1 = T*N' => M'
#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
A2 = T*L => R
#(c) I have never met with anything worth remembering, when on a voyage.
A3 = I => R'
#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
A4 = T*N => L
# Prove that I have never met with a mermaid at sea
proofGoal = M => I'
# Negate proof-goal and add it in
contra1 = A1 * A2 * A3 * A4 * proofGoal'
#Oops, need frame axiom: not met at sea => I have not met with it at sea
frame = T' => I'
contra = contra1 * frame
[contra1 contra]
```

5. ($\mathbf{1 0 \%}$) Write a one-page writeup on NP-completeness, Read about NP-complete problems in http://en. wikipedia.org/wiki/NP-complete. Mention some of the common NP-complete problems. Elaborate on some of the common misunderstandings about NP-complete problems that are listed there. You may survey other sources also - but please cite every source you survey!

Summarize well.

