CS 3100 - Models of Computation - Fall 2011
 Assignment 11 - Given 12/01/11 - version of 8:50am, 12/01/11
 Due 12/09/11 11:59pm
 100 points, 10% of assignment points

With respect to your class-project: Please cite every source in a bibliography.
The Final Exam is in-class, closed-notes, comprehensive, but emphasizes portions covered after the second midterm. It will be similar to both our midterms lots of simple questions that cover the basics; no tedious constructions. The final exam will not pertain to your projects.

Be sure to ask me to discuss these questions at the beginning of the lecture of 12/6

1. $\mathbf{(2 0 \%}$) Write a proof, from first principles (by building the D function) for $H_{\text {alt }}^{T M}$ being undecidable. Halt $_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ that halts on $w\}$. Follow the structure of arguments given on Page 1 of http://www.eng.utah.edu/~cs3100/lectures/l27/notes27.pdf.
2. $(\mathbf{2 0 \%})$ Write a detailed mapping reduction proof from Halt $_{T M}$ to $A_{T M}$, showing details similar to those in Figure (a), Page 2, http://www.eng.utah.edu/~cs3100/lectures/127/notes27.pdf.
3. Explain what the sets A and B of Figure (b) are for these proofs. Write out the "if and only if" style proof "punchline" (e.g. $x \in A$ if and only if $f(x) \in B$; hence a solver for B would solve A) to make sure you understand what is going on. You can get ideas on how to write from Page 2.

- $(5 \%) A_{T M} \leq_{m} P C P$.
- $(\mathbf{5 \%}) P C P \leq_{m} C F G_{a m b}$. Here, $C F G_{a m b}$ is the language of CFG encodings that are ambiguous.

4. $\mathbf{(4 0 \%}$) Encode the following Lewis Carroll puzzle using the DDCal tool and find a proof. You may have to strengthen the given conditions. Thoroughly explain how BDDs helped you solve this puzzle (one-page description).
I'll help you by giving a template, below.
```
# A puzzle by Lewis Carroll :
#
# From the premises
#
#(a) None of the unnoticed things, met with at sea, are mermaids.
#
#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
#
#(c) I have never met with anything worth remembering, when on a voyage.
#
#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
#
# Prove that I have never met with a mermaid at sea
# N = it is noticed, M = it is a mermaid, L = entered in log,
```

```
# R = worth remembering, I = I have met with it at sea, T = met at sea
# First specify the desired variable ordering. DDcal can later reorder
var = T*N*M*L*R*I
#(a) None of the unnoticed things, met with at sea, are mermaids.
A1 = ?
#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
A2 = ?
#(c) I have never met with anything worth remembering, when on a voyage.
A3 = ?
#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
A4 = ?
# Prove that I have never met with a mermaid at sea
proofGoal = ?
# Negate proof-goal and add it in
contra1 = A1 * A2 * A3 * A4 * proofGoal'
#Oops, need frame axiom: not met at sea => I have not met with it at sea
frame = ?
contra = contra1 * frame
[contra1 contra]
```

5. (10\%) Write a one-page writeup on NP-completeness, Read about NP-complete problems in http://en. wikipedia.org/wiki/NP-complete. Mention some of the common NP-complete problems. Elaborate on some of the common misunderstandings about NP-complete problems that are listed there. You may survey other sources also - but please cite every source you survey!
