With respect to your class-project: Please cite every source in a bibliography.

The Final Exam is in-class, closed-notes, comprehensive, but emphasizes portions covered after the second midterm. It will be similar to both our midterms lots of simple questions that cover the basics; no tedious constructions. The final exam will not pertain to your projects.

Be sure to ask me to discuss these questions at the beginning of the lecture of 12/6

1. (20%) Write a proof, from first principles (by building the \(D \) function) for \(\text{Halt}_{TM} \) being undecidable. \(\text{Halt}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on } w \} \). Follow the structure of arguments given on Page 1 of http://www.eng.utah.edu/~cs3100/lectures/l27/notes27.pdf

2. (20%) Write a detailed mapping reduction proof from \(\text{Halt}_{TM} \) to \(A_{TM} \), showing details similar to those in Figure (a), Page 2, http://www.eng.utah.edu/~cs3100/lectures/l27/notes27.pdf

3. Explain what the sets \(A \) and \(B \) of Figure (b) are for these proofs. Write out the “if and only if” style proof “punchline” (e.g. \(x \in A \text{ if and only if } f(x) \in B \); hence a solver for \(B \) would solve \(A \)) to make sure you understand what is going on. You can get ideas on how to write from Page 2.

 - (5%) \(A_{TM} \leq_m PCP \).
 - (5%) \(PCP \leq_m CFG_{amb} \). Here, \(CFG_{amb} \) is the language of CFG encodings that are ambiguous.

4. (40%) Encode the following Lewis Carroll puzzle using the DDCal tool and find a proof. You may have to strengthen the given conditions. Thoroughly explain how BDDs helped you solve this puzzle (one-page description).

I’ll help you by giving a template, below.

```plaintext
# A puzzle by Lewis Carroll :
#
# From the premises
#
#(a) None of the unnoticed things, met with at sea, are mermaids.
#
#(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
#
#(c) I have never met with anything worth remembering, when on a voyage.
#
#(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
#
# Prove that I have never met with a mermaid at sea
#
# N = it is noticed, M = it is a mermaid, L = entered in log,
```
R = worth remembering, I = I have met with it at sea, T = met at sea

First specify the desired variable ordering. DDcal can later reorder
var = T*N*M*L*R*I

(a) None of the unnoticed things, met with at sea, are mermaids.
A1 = ?

(b) Things entered in the log, as met with at sea, are sure to be worth remembering.
A2 = ?

(c) I have never met with anything worth remembering, when on a voyage.
A3 = ?

(d) Things met with at sea, that are noticed, are sure to be recorded in the log.
A4 = ?

Prove that I have never met with a mermaid at sea
proofGoal = ?

Negate proof-goal and add it in
contra1 = A1 * A2 * A3 * A4 * proofGoal'

Oops, need frame axiom: not met at sea => I have not met with it at sea
frame = ?

contra = contra1 * frame

[contra1 contra]

5. (10%) Write a one-page writeup on NP-completeness. Read about NP-complete problems in http://en.wikipedia.org/wiki/NP-complete. Mention some of the common NP-complete problems. Elaborate on some of the common misunderstandings about NP-complete problems that are listed there. You may survey other sources also - but please cite every source you survey!