
CS 3100 – Models of Computation – Fall 2011 – Notes for L26
Computability, Undecidability

Last Updated 10:01am, 11/29/11

Cardinalities (recap)

• We can show that the cardinality of the set of finite fractions between 0 and 1 is ℵ0 (try using the S-B
theorem)

• Write another proof for the cardinality of the set of all C programs, using the S-B theorem.
• We also solved for the cardinality of the set of all languages over Σ∗ where Σ is some non-empty alphabet

(singleton alphabet is OK). Recap that.
• Mismatches of cardinality were argued using the diagonalization method. Make sure you understand that.

Remaining Portions: the Halting Problem; Mapping Reductions; BDDs

• We will resort to the diagonalization argument in showing the undecidability of the halting problem
• We have to build up our notions before we can do that
• We will show how to relate problems to each other using mapping reductions (so using the unsolvability

of one problem, we can show the unsolvability of other problems).
• These arguments are also used for showing NP-completeness
• To appreciate NP-completeness and the power of Boolean reasoning, we will revisit DFA; we can show

how they can compactly encode Boolean functions (in the form of “BDDs”)

Languages of Machines

• So far we studied languages that have a “real purpose” – e.g. language of all strings with an odd number
of 1’s

• We also studied languages that legally encode machines – e.g. “is this a regular expression” or “is this a
CFG” or “is this a PDA description in some encoding format” or “is this a DFA encoding as per JFLAP’s
conventions”

• We will simply write

{〈D〉 | D is a DFA}

to denote “the language of legal DFA encodings.”
• Now we can ask more interesting questions:

– Is this a DFA we are looking at, and furthermore, is it those DFAs that do not accept strings with
odd 1s.

{〈A〉 | A is a DFA that does not accept any string with odd 1s}.

or

{〈D〉 | D is a DFA that does not accept any string with odd 1s}.

(the letter we use does not matter; it is a variable)
• When we say “we,” we don’t mean humans. Eventually we want to automate things. So we (humans!)

will say “is a TM looking at DFAs, claiming to filter out exactly those that do not accept strings with
odd 1s?”

1



• An algorithm has an input, generates an output, is effective (mechanizable), definite (not non-deterministic),
and finite (halts). We are mainly focussed on finiteness in these discussions (we assume the rest of all
problems discussed here).

• We (humans – clear from the context, now on, I hope) want TMs to be algorithmic TMs. I.e. when fired
up, the TM must do the job and halt in an accepting state saying “yes, found such a DFA” or “no, this
ain’t such a DFA.” Then only it can separate Σ∗ into two bins: (1) those strings from Σ∗ that encode
DFAs that do not accept odd 1s, and (2) those strings that either don’t encode DFAs or encode DFAs
that have at least one odd-length string in its language.

• But we will find that life isn’t so smooth; some problems do have algorithms; some problems don’t have
algorithms; and some have semi-algorithms!

• The most important modeling trick:

Problem solving = Language decision!

That is, to solve a problem, model the problem using a language, and then try and build a TM that
decides membership in the language.

• Building a TM is really not necessary; instead, just imagine writing a C or Java program (or Python,
or ..)

• Examples:

– Problem with an algorithm (language that is decidable):

{〈M〉 | M is a TM}

Clearly, one can check that a legal TM has been encoded as per some syntactic conventions.
Another example:

{〈M, w〉 | M is a TM and w is a string in the tape alphabet of M}

Even this is algorithmically checkable. One agrees on a convention to “lay down” a TM description
of M on a tape, then put a separator, then put down w.

– Problem with a semi-algorithm:

ATM = {〈M, w〉 | M is a TM and w is a string in the tape alphabet of M and M accepts w}

This has a semi-algorithm. Simply let a “master” TM (who is doing the language filtering) run M ’s
steps on w (work like an M -interpreter. If and when M is found to accept w, declare “〈M,w〉” is in
ATM .

– Problems with not even a semi-algorithm:

EQTM = {〈M1, M2〉 | M1 and M2 are language equivalent TMs}

Can’t conclusively prove halting, in an identical manner, of M1 and M2 over all of Σ∗.

– Problems with not even a semi-algorithm:

NEQTM = {〈M1, M2〉 | M1 and M2 are language non− equivalent TMs}

Can’t conclusively prove halting, in a non-identical manner (if M1 accepts, M2 does not accept), of
M1 and M2 over all of Σ∗.

2



• Note that TMs M run on w have three outcomes, only two of which are discernible:
– Accept
– Reject
– Loop (is an outcome, but we don’t know we can’t tell that we are doing that!!!)

• Warning: Don’t simply run a given M on a string w. There may be better algorithms around. The
existence of algorithms or existence of semi-algorithms can often be concluded smartly. Look for cut-offs
or other ways to “dovetail and run other computations in parallel.”
Examples:

– Wrong semi-algorithm: Generate one string w1 from Σ∗. Deploy M on w1. If and when M is found
to reject w1, move on to another string w2, etc. What is wrong?1

–

NETM = {〈M〉 | M is a TM with a non− empty language}

A semi-algorithm exists. One can keep cranking out strings “along the x axis” and run M on each
string so far generated “along the t (or time) axis” for some fixed number of steps (usually 1) before
generating another string. So we generate one string, run one more step of M over all strings, then
generate one more string, etc. If L(M) is non-empty, we will eventually hit upon some string wa and
have allocated the right number of steps of M ’s run on wa to have sent M to its accept state.

• Note that if we have a semi-algorithm for a problem and its complement (language and its complement),
then we will have a full algorithm.

NETM = {〈M〉 | M is a TM with a non− empty language}

• Questions on the decidability of NOODDDFA and ACFG: find an algorithm to describe the membership
(or not) of a candidate string in these languages in a finite manner – i.e. finish the work and halt with
a “yes/no.” All algorithms in our discussion are described using pseudo-code and/or precise English
bulletted steps.

• An enumerator for NEQCFG guarantees to list each unequal grammar pair in a finite amount of time.
Think of the difficulty you are faced with (over 15 mins or so of deep thought about the matter) as to
why EQCFG – language-equivalent grammar pairs – can’t be enumerated.

• The existence of a semi-algorithm means “one has proved, or nobody knows whether there is a full
algorithm.” As usual, we use the tighest classification, never calling 1 a complex number or {} a context-
free language.

• The words decidable and undecidable are opposites; undecidable means not decidable.
• The word semi-decidable means undecidable, but partially decidable (i.e. solvable in the true sense, but

not the false sense, or vice versa; one has to clarify which sense holds). EQCFG is not decidable but semi-
decidable: this is because one can guarantee halting at least when the CFGs are language inequivalent.
For this to happen, they must disagree on at least one string.

• Problem: ALLDFA: Given a DFA, is its language Σ∗? Is this problem / language decidable?
• How about AεCFG: Given a CFG, does it generate ε?
• How about INFINITEDFA: Given a DFA, does it have an infinite language?
• How about

EMPTYCFG = {〈G〉 | is a CFG and L(G) = ∅}.
1M may loop on w1. Looping is not detectable. Looping may be an ever increasing exaggerated zig-zag over TM’s tape, with

nothing repeating! While we are at it, we can detect that a PDA is looping, as well as an LBA is looping - how? Unfortunately,
looping in TMs is not detectable. This is our main theorem about the “Halting problem.”

3



• The universality of the language of a CFG is undecidable. A language L is universal if L = Σ∗.
• The equivalence of two CFGs is undecidable.
• In-equivalence of two CFGs is undecidable.
• Whether a given Turing machine accepts string w is undecidable.
• Whether a given Turing machine halts on string w is undecidable.
• The emptiness of the language of a Turing machine is undecidable.
• Whether a given Turing machine’s language is context-free is undecidable.

A language L is TR if it is the language of some Turing machine M . We write LM for emphasis. A
language L is RE if there exists a Turing machine M that can enumerate the strings in L (say, on an
“output tape”) such that any member x ∈ L is guaranteed to appear in a finite amount of time.
Some clarifications:

– Suppose we are required to show that L is TR. We must seek a Turing machine that
∗ Accepts a candidate string x in Σ∗

∗ Engages in the process of determining whether x ∈ L
∗ Halts in the “Accept” state if x ∈ L
∗ Is not required to behave in any specific way (may halt in a non-accepting state—or in other

words, reject x—if x /∈ L. Or it may loop forever.
– Suppose we are required to show that L is RE. We must seek a Turing machine that
∗ After being fired up, may never stop
∗ The TM is expected to print out on the tape each member of L in a finite amount of time,

typically one string after the other.
For instance, NEQCFG = {〈G1, G2〉 | G1, G2 are CFGs and L(G1) 6= L(G2)} is TR.
Many TMs may be “up to the job”: Notice that if L is LM for one TM M , then it is the language
of an infinite number (ℵ0) of other machines, M

′
, as we can simply pad M with i “no op” instructions,

for every i ∈ Nat. Each such artificially bloated TM is indeed considered a distinct TM!
A recursively enumerable (RE) language is the language that an enumerator Turing machine can enu-
merate. An enumerator Turing machine is a Turing machine that has no input tape, but has an output
tape. In addition, it may employ a working tape. It keeps generating (finite) strings, and appends each
generated string to the output tape. NEQCFG is RE.
A language is TR if and only if it is RE. The main argument is that given an enumerator (in the
sense of RE), we can build a recognizer (in the sense of TR), and vice versa. The main reason one should
study both these definitions is to gain mathematical maturity as well as gain experience building various
types of TMs. It also improves one’s ability to come up with innovative proofs either using the TR type
of TMs or the RE types of TMs.
A recursive language LM is the language of a Turing machine M that, given any x ∈ LM , accepts x, and
given any y /∈ LM , rejects y. In other words, M does not loop on any input. Note that it is possible to
have another machine N such that L(M) = L(N) and N loops on inputs y /∈ LM ; however, so long as
there exists one decider M , we can conclude that LM is recursive (or decidable).
Another very important characterization of recursive languages is this: L is recursive if and only if L and
L are RE (equivalently, are TR).
The cardinality of the set of all Turing machine descriptions is ℵ0. This is because a Turing machine
can be described through a finite number of bits that model its states and its transitions, and such a
description can be read as a natural number (these numbers are known as Gödel numbers). On the other
hand, there are ℵ1 languages over Σ. Therefore, there are non-TR (non-RE) languages. This means that
there exist languages in which membership testing cannot be carried out by any Turing machine. EQTM

is neither RE nor co-RE (both itself and its complement are non-RE).

4


