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Abstract. This Paper presents a platform to mine epileptiform activity
from Electroencephalograms (EEG) by combining the methodologies of
Deterministic Finite Automata (DFA) and Knowledge Discovery in Data
Mining (KDD) TV-Tree. Mining EEG patterns in human brain dynam-
ics is complex yet necessary for identifying and predicting the transient
events that occur before and during epileptic seizures. We believe that an
intelligent data analysis of mining EEG Epileptic Spikes can be combined
with statistical analysis, signal analysis or KDD to create systems that
intelligently choose when to invoke one or more of the aforementioned
arts and correctly predict when a person will have a seizure. Herein, we
present a correlation platform for using DFA and Action Rules in pre-
dicting which interictal spikes within noise are predictors of the clinical
onset of a seizure.

1 Introduction

Epilepsy is a neurological disorder that makes people susceptible to recurrent un-
provoked seizures due to electrical disturbances in the brain. Unfortunately, 30%
of patients that suffer from epilepsy are not well controlled on medication. Only
a small fraction of these can be helped by seizure surgery [5]. Therefore, it would
be life changing to a large number of individuals if a system could be developed
that would predict a seizure hours, minutes, or even seconds before its clinical
onset. The challenge in this problem is that the dimensionality is huge; in the
human brain there are approximately 100 billion neurons, each with about 1000
connections (synapses)[28]. Even in the rat brain it is estimated that there are
approximately 200 million neurons [4], [1]. The connections are wired such that
the problem is highly chaotic. In a certain class of seizures it would be helpful
if they could be detected even a few seconds prior to the start of a seizure. The
dimensionality of the problem can be significantly reduced, with only a small loss
of information by recording electrical potentials at multiple points on the surface
of the skull or, using depth electrodes, in the hippocampus (EEG). EEGs are
accepted as one of the best means of evaluating neurocognitive functions [15].
EEG spike/seizure detection and prediction is made more complicated by the
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following: (1) For a single individual, no two seizures or even their EEG corre-
lates are exactly alike, (2) seizures from different individuals vary significantly,
(3) there is no single metric that consistently changes during all seizures, (4) cor-
relation among channels can change significantly from one seizure to the next,
and (5) even experts disagree as to what constitutes a seizure [27]. Occasionally,
the reduction in dimensionality does result in an indeterminate mapping from
EEG record to animal state (i.e. it is not surjective or onto). For the reasons
listed above, rigid seizure detection rules do not produce good results [7], [26].
Interictal spikes are brief (20 - 70 ms) sharp spikes of electrical phenomena that
stand out when compared to background EEG rhythms and may be indicative
of an underlying epileptic process. Because they are considered as an indicator
of the presence of epileptic seizures, and may actually precede a seizure (sentinel
spike), the detection of these interictal, transient spikes which may be confused
with artifact or noise is indeed a crucial element in the prediction of epileptic
conditions.
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Fig. 1. Implantable Tethered System Devices : (A-D) Stereotaxic placement of cortical
electrodes. (E) Dental cement polymer applied to hold the electrodes in place. Note
dental cement on q-tip. (F) The tethered pre-amplifier connects to the implanted elec-
trodes and sends the signals to Epilepsy Monitoring Unit)

2 Recording Epileptogenesis

Until 1992 most EEG analysis was based on analysis of brain slices [14] or anes-
thetized animals [3]. Kainic acid, a chemoconvulsant extracted from seaweed, was
introduced to induce seizures in animals. This provided a major breakthrough
particularly with the advent of monitoring the animals on video, but the equally
significant subclinical seizures were impossible to detect with video monitoring
alone. The field was further advanced through the development of a tethered
recording system [2] in which multi-channel cortical and sub-cortical recordings
could be obtained. The quality of recordings were further improved by incorpo-
rating a small pre-amplifier close to the skull, allowing for a significant increase
in the signal to noise (S/N) ratio. As shown in Figure 1, electrodes were placed
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stereotaxically in the hippocampus and secured in the skull [25], [24] Additional
electrodes were placed directly on the dura. Dental cement was applied to hold
the electrode pins together in a plastic cap that was later connected to the pre-
amplifier. The pre-amplified signal was sent to an amplifier and from there to a
computer for storage.
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Fig. 2. Rat 6K2 : Progression of a Clinical convulsive seizure: (A) Video capture shows
the Rat to be in a normal sleeping stage. (B-C) Rat exits sleeping stage and starts
having a p3 seizure (racine scale). (D-F) The seizure magnitude escalades and leads to
a violent uncontrollable seizure - p5 (racine scale).

Our facility has the capability of continuously monitoring up to 64 tethered or
untethered rats. Untethered rats underwent video monitoring and the tethered
rats underwent both video and EEG monitoring. This paper will discuss an
algorithm for analyzing the EEG of a rats experiencing an event that evolves
into a P5 Seizure [18] This event occurs somewhat infrequently, and we have
collected EEG data set with three events that includes both the seizures and
several minutes surrounding the events. As seen in Figure 2, a rat experienced
a kainite-induced seizure that evolved from stage P3 to P5. In frame A, the rat
was sleeping. In Frame B, 58 seconds later, the rat experienced a P3 seizure
evidenced by the circular clawing (forelimb clonus). In Frame C, 28 seconds
later, convulsive activity stopped and there was no epileptic activity on the EEG.
Frame D was taken 1 minute later and at this point the rat began to experience a
P5 seizure that lasted several seconds. Frames E and F were taken subsequently
and demonstrate the intensity of the seizure. Not seen in this figure is that
this rat was eating calmly shortly after the end of the seizure. The availability
of EEG data for this seizure and 2 other similar seizures, along with video,
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allowed us to test the hypothesis that a novel deterministic finite automata
(DFA) methodology will be able to differentiate the different aspects (sleeping,
P3 seizure, between seizures, and P5 seizure) of the EEG record.

I II III
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Fig. 3. Rat p3 seizure (racine scale): §1: 6K2’s EEG state correlating to Figure 2’s
Stage B denoted by circular clawing §2: I. Normal EEG wave-form while Rat is a
sleep. II. Appearance of Sentinel Spike prior to P3 (Racine Scale) seizure. III. Possible
Interictal Spike often misinterpreted as Artifact and vice-versa..

2.1 EEG Analysis

For our analysis EEG potentials were sampled at 800Hz. EEG electrodes were
placed bilaterally in the hippocampi (referenced to a common dural screw) and
a separate channel recorded from the dura. Each EEG contains a approximately
100,000 time points. As such, its interpretation is non-trivial and attempts at
automating the analysis have met with only limited success. In this paper, we
seek to demonstrate the efficacy of the DFA algorithm to distinguish all 4 states
in each seizure event and distinguish artifact from interictal spikes and other
noise. An author (RL) has begun to integrate statistical analysis with Action
Rules [9], [19], [21] in Signals with a system influenced Dr. Zdzislaw Pawlak [17],
[20], [23]. Fourier Action Rules Trees of signal distortion [10] and 3) Machine
Learning with Signal Noise, Genetic algorithms [12] and FS-trees, Rough Sets,
LERS, PNC2, J45, CART, & Orange. [11]

Figure 3§1 illustrates one rat’s normal EEG wave-form while asleep. Point II
in Figure 3§1 illustrates a Sentinel Spike, the hallmark indicator that a seizure
is imminent. Point III in Figure 3§1 shows a region in which the EEG record
deviates from baseline. An important task is to determine whether this deviation
is simply artifact or if it represents epileptiform activity (an interictal spike)
Figure 3§2 provides details of the P3 seizure. Figure 4§3 provides a zoomed-out
overall view of all four stages and Figure 4§4 provides details of the P5 (Racine
Scale) stage.
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Fig. 4. Rat P3’s Seizure (Racine Scale): §3: I. A P3 (Racine Scale) seizure in progress.
II. Period of no Electrographic seizing activity. III. Electrographic outburst indicating
the violent seizure time. IV. End of Electroencephalographic seizure event. §4: Covers
periods D, E and F in Figure 2 showing the EEG analysis while 6K2 experiences the
P5 (Racine Scale) seizure Figure 2.

3 Methods

3.1 Deterministic Finite Automata (DFA)

Deterministic finite automata can be used in many applications. We used this
methodology to track the current state of a finite-state EEG system. As time
moved forward the particular system state would change dependent on such
quantities as amplitude, slope, second derivative, Short-Term Fourier Transform
STFT (average frequency) as well as other signal features. For the current anal-
ysis, programming was done using Visual Basic subroutines and data was stored
using the European Data Format (EDF). At time zero we begin at state zero.
The state at the next time step is assumed to be dependent only on the cur-
rent system state and conditions (input state) during the current time step (e.g.
slope). A consequence of this is that the current state is independent of the order
in which the input states occurred (in this sense it is similar to a Markov chain).

Illustrative Example of our DFA Methodology To motivate reader under-
standing we illustrate the concept of our usage of DFA using a simplified tran-
sition table given in Figure 5. The table in Figure 5 has a total of ten columns.
The first column is the current system state. As one moves from one time point
of the EEG to the next, the state of the system changes. The state to which
the system changes is based upon the transition matrix; each of the columns
in the transition matrix represents a current parametric set (e.g. slope within
a particular range). More generally, the columns may represent a condition in
which current or past parameters have specified values. It should comprise a
collectively exhaustive and mutually exclusive set such that there are no events
that either fall into multiple columns or do not fall into any of the columns. One
proceeds from one system state at a given time point to the next system state
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at the next time point until a terminal event occurs. Terminal events can be the
identification of spikes, seizures or artifact.

As mentioned previously, the first column of the transition table corresponds
to the current system state. The particular input state at the current time
(columns 5 - 10) is ascertained by investigating parameters at that time or
at prior times. For this example, we have six mutually exclusive, collectively
exhaustive input states. These are presented in Table 1 where α, β, and γ are
limits selected by the authors using expert knowledge of what parameters would
be characteristic of spikes. We note that states 4, 5 and 6 are the same as 1, 2,
and 3 except that the absolute value of the second derivative (f”(x)or d2y

dt2 )is less
than γ. The purpose of the use of slope (m = y2−y1

t2−t1
) is to differentiate between

the normal state, the possibility of a spike, and likely artifact (artifact, such as
that noted when the animal is chewing, is often distinguished from spike because
the slope is much greater).

0 0 0 0 0 2 0 0 2 0

1 0 0 1 0 3 0 0 3 0

2 0 1 0 10 4 3 10 4 3

3 0 1 1 11 5 0 11 5 0

4 0 2 0 12 6 5 12 6 5

5 0 2 1 13 7 0 13 7 0

6 0 3 0 14 6 7 14 16 7

7 0 3 1 15 7 0 15 16 0

8 1 0 0 0 10 0 0 10 0

9 1 0 1 0 11 0 0 11 0

10 1 1 0 0 12 11 0 12 11

11 1 1 1 0 13 0 0 13 0

12 1 2 0 0 14 13 0 14 13

13 1 2 1 0 15 0 0 15 0

14 1 3 0 0 14 15 0 16 15

15 1 3 1 0 15 0 0 16 0

16 0 0 0 24 18 17 24 18 17

17 0 0 1 25 19 0 25 19 0

18 0 1 0 26 20 19 26 20 19

19 0 1 1 27 21 0 27 21 0

20 0 2 0 28 22 21 28 22 21

21 0 2 1 29 23 0 29 23 0

22 0 3 0 30 22 23 30 32 23

23 0 3 1 31 23 0 31 32 0

n-1 1 3 0 0 30 31 0 32 31

n 1 3 1 0 31 0 0 32 0
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Fig. 5. Sample Transition Table: where the number of possible states is 31, the number
of states with slope too high required for rejection is 2, number of states required for
slopes in the range for acceptance is 4, and the number of states with slope too low
requiring rejection is 2.
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The purpose of the use of f”(x) is to ensure that there is actually a peak and
not just a baseline shift. Columns 2 - 4 indicate the number of times that input
states 1 or 4, 2 or 5. or 3 or 6 respectively have occurred. For example, looking at
system state 12 one notes that there has been a single event in which the input
state 1 or 4 existed, two events in which input state 2 or 5 existed and no events
in which the state 3 or 6 existed. To register a spike, there must be two time
points in which (m = y2−y1

t2−t1
) falls in the range expected for a spike (input states

2 or 5), followed by one time point in which f”(x) is high (input state 5) which
corresponds to a peak, followed by two time points in which the slope again
falls in the correct range (input states 2 or 5). This sequence must occur before
one obtains two slopes greater than the range or two slopes less than the range.
In this example a spike is indicated by system state 32. A heuristic definition
can then be used to establish the seizure state by requiring a certain number of
spikes in a particular time interval (e.g. 20 detected spikes in 10 seconds).

Input State Conditions

1 | m =
y2−y1
t2−t1

| > α ∧ | f”(x)or d2y

dt2
| < γ

2 α > | m =
y2−y1
t2−t1

| > β ∧ | f”(x)or d2y

dt2
| < γ

3 | m =
y2−y1
t2−t1

| < β ∧ | f”(x)or d2y

dt2
| < γ

4 | m =
y2−y1
t2−t1

| > α ∧ | f”(x)or d2y

dt2
| > γ

5 α > | m =
y2−y1
t2−t1

| > β ∧ | f”(x)or d2y

dt2
| > γ

6 | m =
y2−y1
t2−t1

| < β ∧ | f”(x)or d2y

dt2
| > γ

Table 1. Six mutually exclusive, collectively exhaustive input states. Where
α, β, and γ are user selected constants. States 4, 5 and 6 are the same as 1, 2, and 3
except that the second derivative is less then a given value

We now consider the sample path through the transition matrix illustrated
by the chain of circles noted. For this sample the sequence of input states are
assumed to be: 2, 2, 3, 1, 2, 5, 5, 5, 5 We initially start with state 0, time interval
0. At this time, the slope was calculated to be appropriate for a spike, i.e. α
<| slope | < β, with the second derivative γ (input state = 2). As a result
the transition matrix indicated a change to system state 2. For the second time
interval the input state was calculated to be the same as that in the first time
interval (input state = 2), and the transition matrix (row 3, column 6) indicated
a change to system state 4. In the next time interval input state 3 was calculated
and the system state of 5 (row5, column7) was determined. Subsequent input
states could then be coupled with the current system states to draw a time path
through the transition matrix. In this case, a spike is registered at the end of the
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path because state 32 is obtained at the end of the chain. Had there been too
many slopes that did not meet criteria, the system state would return to zero
(see for example system state 9, input state 1).

3.2 Results

For our analysis of the data we used the same six input states given in the
example above. These used only the slope and standard deviation to determine
the input state. The transition table was significantly bigger, having 336 entries.
This required 7 slopes in the correct range, but allowed 4 slopes to be too great
and 6 slopes to be too small to terminate a spike search sequence. A screen
capture of the code correctly identifying a spike is given in Figure 6. Similarly,
a screen capture of the code correctly rejecting artifact is given in Figure 7. The
algorithm was quite successful at determining the presence of spikes and using
the heuristic definitions of seizures (> 20spikes in 10seconds), was able to detect
all seizures without difficulty. This determination was made within 6 seconds of
the onset of the seizure. Figure 8 gives the EEG recording on which the detected
spikes are indicated. Unfortunately, the code was unable, using only slope and
standard deviation, to differentiate between either sleep and interseizure period
or between the P3 and P5 portions of the seizure.

I   II               III    IV                                   V             VI            VII                                  VIII                        IX

Fig. 6. Correctly Detecting Spike: Direct Screen Capture from Visual Studio Platform
where I. Indicates red line programmed to identify the existence of pre-seizure spike.
II. Current State. III. Current Slope. IV. Red ”pop-Up” programmed to alert a pre-
seizure spike is detected. V. Current 2nd Derivative. VI. Current Standard Deviation.
VII. Input State. VIII. Time of Day, and IX. Beginning of correctly predicted Seizure.
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I   II               III    IV                                   V             VI            VII                                  VIII                        IX

Fig. 7. Correctly Detecting Artifact : Direct Screen Capture from Visual Studio Plat-
form where I. Indicates red line programmed to identify the existence of Artifact. II.
Current State. III. Current Slope. IV. Red ”pop-Up” programmed to alert a pre-
seizure spike is detected. V. Current 2nd Derivative. VI. Current Standard Deviation.
VII. Input State. VIII. Time of Day, and IX. Possible spike located visually. Pro-
gramm soon detects it as a positive.

3.3 Conclusions

DFA is an extremely flexible platform that can be used to identify spikes and
seizures and to sort various events that occur during seizures. The flexibility al-
lows it to mimic and also use other techniques in its determination. In the present
case, we have only scratched the surface of the true capability of the methodol-
ogy. It is possible to greatly extend our analysis through the use of much more
sophisticated input states. These could use algorithms such as Fourier series
or wavelet analysis to determine the best path through the transition matrix.
It is not restricted to linear analysis such as Neural Networks, Random Forest
and Machine Learning’s J45 to define strong classifiers for items such as Sen-
tinel Spikes; it is also possible to use sequential non-linear analysis to establish
whether or not spikes have occurred. By generalizing the input states to include
past parameters, it is even possible to force the current state to be dependent
on the path taken to get to the current state. The transition matrix can also
be modified in such a way that multiple final deterministic states are possible
(i.e. multiple end points could be identified). It is our plan to investigate fur-
ther methods in which the DFA algorithm can be successfully employed. This
includes the process of integrating KDD with the DFA methods and also con-
sidering the use of time domain analysis of EEG signal by statistical analysis
and characteristics computation [13] with different frequencies [22], non-linear
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I II III IV

Fig. 8. Results: Seizure Correctly Predicted : Code correctly identifies a seizure 6 sec-
onds before its onset. I. Excel Spreadsheet with CSV output. II. Excel built in graph.
III. The Spikes Detected references and IV. Seizure Detected at location 6 seconds
before onset.

dynamics and chaos theory [8], and intelligent systems such as artificial neural
network and other artificial-intelligence structures [6], [16].
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20. Z. Raś, A. Tzacheva, and L. Tsay. Action rules. Encyclopedia of Data Warehousing
and Mining, pages 1–5, 2005.
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