
CS 3100 – Models of Computation – Fall 2011 – Notes for L25
Cardinalities, Computability, Undecidability

Last Updated 9:54am, 11/22/11

1 Cardinalities of Infinite Sets

In these notes, we discuss the important idea of measuring sizes of infinite sets. To motivate this problem,
consider the following:

S1 = {0, 2, 4, 8, . . .} ⊂ Nat = {0, 1, 2, 3, . . .}

and yet by dividing every element of S1 by 2, we get the set of Nat; thus, one can put S1 in 1-1 correspondence
with Nat through the 1-1, onto, and total function λx.(x/2). In effect, comparing the sizes of infinite sets is
like the “barter method” (try and match up 1-1). We have these facts:

• Even though one set may be a proper subset of another set, so long as there is a 1-1 correspondence (1-1,
onto, and total) map from one set to the other, the sets are of the same size or cardinality.

• If one cannot have such a correspondence, then the sets are of different cardinalities.

The first cardinal number is ℵ0 (“aleph 0”). This is taken to be the “size” of Nat. Thus, the “size” (or
cardinality) of S1, above, is ℵ0. The second cardinal number is ℵ1 (“aleph 1”)—same as the size of Reals, etc.

1.1 Correspondence: Total Bijection f : A→ B

A correspondence is a total bijection.

• A total function is defined everywhere in its domain.

• A bijection is a 1-1 and onto function.

• A 1-1 ensures that each element in the range (or co-domain) comes from at most one domain element.

• An onto map ensures that every element of the range is covered.

1.2 Schröder-Bernstein (SB) Theorem

Finding a correspondence is not that easy; finding 1-1 and into maps is often easier. The Schröder-Bernstein
(SB) theorem is as follows:

Suppose for two sets A and B, there exists a 1-1, total, and into map f : A→ B, and another total
into map g : B → A. Then there is a total bijection h : A→ B.

Of course, h : A→ B is a total bijection from A to B if and only if h−1 is a total bijection from B to A.

1

1.3 Counting the number of points in a 4-dimensional grid

Let us try and count the number of points in a 4-dimensional grid

4dGrid = {〈x, y, z, w〉 | x, y, z, w ∈ Nat}.

Normally, one would have to find a total bijection h of the form
〈0, 0, 0, 0〉 → n0

〈0, 0, 0, 1〉 → n1

〈0, 0, 0, 2〉 → n2

. . .
〈0, 0, 1, 0〉 → nk

. . .
Finding these bijections is possible, but a bit tedious.

Instead, consider this f :
〈x, y, z, w〉 → 2x × 3y × 5z × 7w

Similarly, consider this g:
〈x〉 → 〈x, 0, 0, 0〉

Since f and g are total, 1-1, and into maps from 4dGrid to Nat and from Nat to 4dGrid respectively, there
does exist a total bijection h from 4dGrid to Nat and vice-versa. Hence these sets have the same cardinality.

1.4 Counting the number of C programs

Let CP be the set of all legal C programs where each program is viewed as a string. Then, define f : CP → Nat
to be the natural number encoded by the ASCII bits of the C program characters, strung end to end.

There are thousands of ways to define such an f . One can, for instance, obtain this from the od program
run with a -H option:

od -H << END
ABCDEFGH
END
44434241 48474645 0000000a

This means: "A" got packed as 41 in hex; then "B" as "42 in hex, etc.

-- another example --

od -H << END
main(){}
END
0000000 6e69616d 7d7b2928 0000000a
0000011

Excluding CR and LF, we have 6e69616d7d7b2928, which is some natural number.

Now, one can define function g as follows:

2

0 -> main(){}
1 -> main(){;}
2 -> main(){;;}
...
10 -> 2 -> main(){;;;;;;;;;;}
...

Given f and g, there is a correspondence between CP and Nat, showing that the cardinality of CP is ℵ0.

1.5 Counting the Powerset of Nat

The powerset of Nat has cardinal number ℵ1. Each element of the powerset of Nat is a bit-vector of infinite
length, each telling whether a given number is there or not. For example, {2, 4} is denoted by

001010...

which tells that 2 and 4 are “on” (there), and all other natural numbers aren’t in that set. These vectors
are called characteristic vectors (cv).
Suppose we claim a correspondence:

0→ cv0
1→ cv1
. . .
i→ cvi

Then we can find a cv that evades mapping. Take the diagonal entry of the infinite matrix defined by cv0,
cv1, etc. Invert this diagonal. This gives us a cv that can’t be the image of any natural number i (it differs
from what each Nat element already maps to). Thus, in the absence of a correspondence, we give the cardinal
number ℵ1 to the powerset of Nat.

1.6 Counting Reals

The argument for Reals goes quite similarly. For the simplicity of exposition, we first present a proof that is
“nearly right,” and much simpler than the actual proof. In the next section, we repair this proof, giving us the
actual proof. Suppose there is a bijection f that puts Nat and [0, 1) in correspondence C1 as follows:

0→ .b00b01b02b03 . . .

1→ .b10b11b12b13 . . .

. . .

n→ .bn0bn1bn2bn3 . . .

. . .

where each bij is 0 or 1.
Now, consider the real number

D = 0.¬b00 ¬b11 ¬b22 ¬b33

This number is not in the above listing, because it differs from the i-th number in bit-position bii for every i.
Since this number D is not represented, f cannot be a bijection as claimed. Hence such an f does not exist.

3

1.7 ‘Fixing’ the proof a little bit

Actually the above proof needs a small “fix”; what if the complement of the diagonal happens to involve a 1?
The danger then is that we cannot claim that a number equal to the complemented diagonal does not appear
in our listing. It might then end up existing in our listing of Reals in a “non 1 form.”

We overcome this problem through a simple correction. This correction ensures that the complemented
diagonal will never contain a 1. In fact, we arrange things so that the complemented diagonal will contain zeros
infinitely often. This is achieved by placing a 1 in the uncomplemented diagonal every so often; we choose to
do so for all even positions, by listing the Real number .12n+10 . . . (2n+ 1 1s followed by 0) at position 2n, for
all n. Consider the following correspondence, for example:

0→ .10
1→ .c00c01c02c03 . . .

2→ .1110
3→ .c10c11c12c13 . . .

4→ .111110
5→ .c20c21c22c23 . . .

6→ .11111110
. . .

2n→ .12n+10 . . .
2n+ 1→ .cn0cn1cn2cn3 . . .

. . .

Call this correspondence C2. We obtain C2 as follows. We know that the numbers .10, .1110, .111110, etc.,
exist in the original correspondence C1. C2 is obtained from C1 by first permuting it so that the above elements
are moved to the even positions within C2 (they may exist arbitrarily scattered or grouped, within C1). We
then go through C1, strike out the above-listed elements, and list its remaining elements in the odd positions
within C2. We represent C2 using rows of .cij , as above.

We can now finish our argument as follows. The complemented diagonal doesn’t contain a 1, because it
contains 0 occurring in it infinitely often. Now, this complemented diagonal cannot exist anywhere in our .cij
listing. The complemented diagonal is certainly a Real number missed by the original correspondence C1 (and
hence, also missed by C2). Hence, we arrive at a contradiction that we have a correspondence, and therefore,
we cannot assign the same cardinal number to the set [0, 1) ⊆ Real. It is therefore of higher cardinality.

The conclusion we draw from the above proof is that Real and Nat have different cardinalities. Are there
any cardinalities “in between” that of Real and Nat? Loosely speaking, “is there a ℵ0.5?!” The hypothesis that
states “no there isn’t a cardinality between ℵ0 and ℵ1,” or in other words, “there isn’t a ℵ0.5,” is known as the
Continuum Hypothesis. It has been a problem of intense study over the last 120 years, and in fact is the first of
Hilbert’s 23 challenges to computer science. These challenges helped spur considerable amounts of research in
Computer Science, and contributed to much of the foundational knowledge of the subject area (e.g., as covered
in this book). We shall use cardinality arguments when comparing the set of all functions and the set of all
computable functions.

4

1.8 Cardinality of 2Nat and Nat→ Bool

In this section, we argue that the sets 2Nat (the powerset of Nat) and Nat → Bool (the set of functions
from Nat to Bool) have the same cardinality as Real. Notice that each set within 2Nat can be represented
by an infinitely long characteristic sequence. For instance, the sequence 10010100 represents the set {0, 3, 5};
the sequence 101010 . . . represents the set Even; the sequence 010101 . . . represents the set Odd; and so on.
Notice that the very same characteristic sequences also represent functions from Nat to Bool. For instance,
the sequence 10010100 represents the function that maps 0, 3, and 5 to true, and the rest of Nat to false;
the sequence 101010 . . . represents the function λx.even(x); and the sequence 010101 . . . represents the function
λx.odd(x). Hence, the above two sets have the same cardinality as the set of all infinitely long bit-sequences.
How many such sequences are there? By putting a “0.” before each such sequence, it appears that we can define
the Reals in the range [0, 1]. However, we face the difficulty caused by infinite 1s, i.e., we will end up having
1 occurring within an infinite number of infinite sequences. However, all these have been addressed cleanly in
the construction we just now illustrated in § 1.7.

2 Undecidability of the Halting Problem

We define the notion of decidability, semi-decidability, and undecidability. These notions pertain to degrees of
solvability of problems by Turing machines. We will present three proof methods in this chapter: (i) through
contradiction (Section 4.3), (ii) through reductions from languages unknown to be decidable (Section 4.4), and
(iii) through mapping reductions (Section 4.5).

Methods (ii), (iii), and (iv) are strongly related to each other, in the following sense:

• Applications of method (ii), namely reduction from a known undecidable language, A, to the language in
question, B, employs an ‘if and only if’ argument of the form x ∈ A⇔ f(x) ∈ B.

• Method (iii), namely mapping reductions, isolates this ‘if and only if’ argument into a mapping reduc-
tion principle which is quite powerful, and also applicable in other contexts (e.g., in our study of NP-
completeness later).

3 Some Decidable and Undecidable Problems

3.1 An assortment of decidable problems

In all descriptions below, we use 〈〉 to indicate the code or description; for instance, 〈G〉 stands for a grammar
G’s description as a character- or bit-string. Also, for a Turing machine M , 〈M〉 will mean its description, say
in the form of a table such as JFLAP’s tabular coding of TM transitions. Sometimes, we omit 〈. . .〉 if the intent
is clear from the context.

� ALLDFA: Given a DFA, is its language Σ∗?
This problem is modeled as a language membership question in the language:

ALLDFA = {〈A〉 | A is a DFA that recognizes Σ∗}.

ALLDFA can be shown to be decidable by minimizing the given DFA and examining the result.

� AεCFG: Given a CFG, does it generate ε?

5

AεCFG = {〈G〉 | G is a CFG that generates ε}.

One approach is to trace all ε-generating productions using a bottom-up marking algorithm similar to how
we found generating non-terminals—except we focus on which non-terminals generate ε. Call this notion ε-
generating. Now, for any a ∈ Σ, a is not ε-generating. If A→ ε, then A is ε-generating. If A→ B1 . . . Bn and
if all of Bi are ε-generating, then so is A. Finally, check whether the start symbol S is ε-generating.

� INFINITEDFA: Given a DFA, does it have an infinite language?

INFINITEDFA = {〈A〉 | A is a DFA and L(A) is Infinite}.

� NOODDDFA =

{〈A〉 | A is a DFA that does not accept any string with odd 1s}.

� ONESTARCFG: Given a CFG, does it include some strings from 1∗?

ONESTARCFG = {〈G〉 | G is a CFG over {0, 1} and 1∗ ∩ L(G) 6= ∅}

One algorithm is to build the product machine of a DFA for 1∗ and a PDA for G with a view to obtain
the intersection of their languages. The result will be a PDA. We can then check the language emptiness of
this PDA, which is decidable (e.g., by converting the resulting PDA to a CFG and running the bottom-up
marking algorithm on the CFG to see if the start symbol, S, of the CFG, is generating). Details of this product
construction algorithm are left to the reader.

� EMPTYCFG:

EMPTYCFG = {〈G〉 | is a CFG and L(G) = ∅}.

One can employ a marking-based algorithm to decide whether starting from the initial non-terminal, S, one
can generate a terminal-only string.

Main Take-away Message

The main take-away message is that we are often asked to answer queries about languages accepted by specific
machines. These queries can often be answered algorithmically; but beginning with PDAs, many questions, we
have limited luck. We can decide EMPTYCFG. With TMs, all but the trivial questions will prove to have
associated undecidable languages—meaning, these questions can’t be algorithmically answered.

3.2 Assorted undecidable problems

We now present a list of undecidable problems and sketch reasons for them to be undecidable. In Section 4, we
present the actual undecidability proofs, after introducing basic notions such as recursive enumerability.

• The universality of the language of a CFG is undecidable. A language L is universal if L = Σ∗.
• The equivalence of two CFGs is undecidable.

6

• In-equivalence of two CFGs is undecidable.
• Whether a given Turing machine accepts string w is undecidable.
• Whether a given Turing machine halts on string w is undecidable.
• The emptiness of the language of a Turing machine is undecidable.
• Whether a given Turing machine’s language is context-free is undecidable.

Here are intuitive arguments that support the above claims:

• LG = Σ∗: Informally, given a CFG G, it seems one must find a string that G cannot generate. One can,
of course, keep checking the strings within Σ∗ in an ascending order of lengths, with each check taking a
finite amount of time; however, this process does not have a definite stopping criterion. A formal proof
will be given later, but intuitively it does appear that this is undecidable – and let us assume so for the
purpose of supporting the following discussions.

• LG1 = LG2 : If this were to be decidable, we would be able to decide LG = Σ∗.
• LG1 6= LG2 : We observe that we must examine whether every string generated by G1 is generated by G2,

and vice versa. This appears to be a search with no definite stopping criterion. However, since LG1 = LG2

is not decidable, LG1 6= LG2 cannot be decidable (if set S is decidable, so is S; otherwise, we can employ
the algorithm to decide S as an algorithm to decide S. Please think why).

• We will state and prove results about the halting and acceptance of Turing machines. It also will turn out
that we can find similar proofs for the emptiness of the language of a Turing machine being undecidable,
and for whether a given Turing machine’s language is context-free being undecidable. This series of
undecidability results about Turing machines is usually captured by one “master theorem” called Rice’s
Theorem.

In Section 4, we will motivate the important concept of recursive enumerability. We will show that all
pairs 〈G1, G2〉 such that LG1 6= LG2 are enumerable, in the sense that every such pair can be found in a finite
amount of time and printed out. This will mean that the language of pairs 〈G1, G2〉 such that LG1 = LG2 is
not enumerable (if a set S and its complement are enumerable, then membership in S becomes decidable, as
will be re-iterated soon). This is another reason why the language of pairs 〈G1, G2〉 such that LG1 6= LG2 is not
decidable.

4 Undecidability Proofs

4.1 Turing recognizable (or recursively enumerable) sets

The terms Turing recognizable (TR) and recursively enumerable (RE) will be used interchangeably as they
essentially mean the same thing, but from two different perspectives. A language L is TR if it is the language
of some Turing machine M . We write LM for emphasis. A language L is RE if there exists a Turing machine
M that can enumerate the strings in L (say, on an “output tape”) such that any member x ∈ L is guaranteed
to appear in a finite amount of time.
Some clarifications:

• Suppose we are required to show that L is TR. We must seek a Turing machine that

– Accepts a candidate string x in Σ∗

– Engages in the process of determining whether x ∈ L

7

– Halts in the “Accept” state if x ∈ L
– Is not required to behave in any specific way (may halt in a non-accepting state—or in other words,

reject x—if x /∈ L. Or it may loop forever.

• Suppose we are required to show that L is RE. We must seek a Turing machine that

– After being fired up, may never stop

– The TM is expected to print out on the tape each member of L in a finite amount of time, typically
one string after the other.

For instance,
NEQCFG = {〈G1, G2〉 | G1, G2 are CFGs and L(G1) 6= L(G2)}

is TR, with a candidate Turing machine being the following:

• Input: 〈G1, G2〉.
• Output: If 〈G1, G2〉 ∈ NEQCFG, then “accept,” else “loop.”
• Method:

− Generate strings x ∈ Σ∗ in numeric order, feeding x to a parser (PDA) for G1 and another for G2.
− For each such x, if x can be parsed by G1 and not by G2 (or vice versa), go to accept.

This process can keep enumerating unequal CFG pairs; but if two CFGs P and Q happen to denote the
same language, this process will not be able to list 〈P,Q〉. This is typical of problems that are semi decidable.

Many TMs may be “up to the job”: Notice that if L is LM for one TM M , then it is the language of
an infinite number (ℵ0) of other machines, M

′
, as we can simply pad M with i “no op” instructions, for every

i ∈ Nat. Each such artificially bloated TM is indeed considered a distinct TM!

Recursively Enumerable Languages

A recursively enumerable (RE) language is the language that an enumerator Turing machine can enumerate. An
enumerator Turing machine is a Turing machine that has no input tape, but has an output tape. In addition,
it may employ a working tape. It keeps generating (finite) strings, and appends each generated string to the
output tape. Here is an enumerator for NEQCFG:

• Keep enumerating all possible pairs of grammars 〈G1, G2〉 over the given alphabet, on a working tape. This
is possible because the syntax of any context-free grammar over a given set of terminals and non-terminals
is expressible as a regular expression, and one can generate random strings and filter those passing the
regular expression as a legal CFG.

• Keep enumerating strings x ∈ Σ∗ in enumeration order, also on the working tape.
• Run one additional step of a parsing algorithm for all the grammar pairs 〈G1, G2〉 generated so far acting

on all the inputs x generated so far (these are called the ‘simulations in progress’).
• If one of the simulations in progress reports that the parser for grammar G1 accepted an x while the

parser for the corresponding grammar G2 rejected x (or vice versa), then write 〈G1, G2〉 on the output
tape.

8

The above enumerator guarantees that every pair of nonequivalent grammars will, eventually, be enumerated.
From the above constructions, it is an easy exercise to conclude the following theorem.

Theorem 4.1 A language is TR if and only if it is RE.

The main argument is that given an enumerator (in the sense of RE), we can build a recognizer (in the sense
of TR), and vice versa.

Why study both definitions, namely TR and RE?: The main reason one should study both these
definitions is to gain mathematical maturity as well as gain experience building various types of TMs. It also
improves one’s ability to come up with innovative proofs either using the TR type of TMs or the RE types of
TMs.

4.1.1 Dovetailing and systematic enumeration methods

In many of our Turing machine constructions, we face the situation of enumerating the Cartesian product of a
collection of sets Si, i ∈ k for some k ∈ N . For example, we may have to enumerate pairs of grammars and
strings, thus effectively enumerating triples from sets that, individually, have ℵ0 cardinality. There are many
systematic approaches for achieving this end; we now summarize a standard approach, taking triples of Nat as
an example:

• Enumerate all the triples that add up to i before enumerating any triple that adds up to i + 1. Within
each group that adds up to i, employ a lexicographic order.

• As an example, enumerate 〈0, 0, 0〉, followed by 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 0〉, followed by 〈0, 1, 1〉, 〈1, 0, 1〉,
〈1, 1, 0〉, 〈0, 0, 2〉, 〈0, 2, 0〉, 〈2, 0, 0〉, etc.

4.2 Recursive (or decidable) languages

A recursive language LM is the language of a Turing machine M that, given any x ∈ LM , accepts x, and given
any y /∈ LM , rejects y. In other words, M does not loop on any input. Note that it is possible to have another
machine N such that L(M) = L(N) and N loops on inputs y /∈ LM ; however, so long as there exists one decider
M , we can conclude that LM is recursive (or decidable).
Another very important characterization of recursive languages is this:

Theorem 4.2 L is recursive if and only if L and L are RE (equivalently, are TR).

Imagine an enumerator enumerating L and another enumerating L. To decide whether some x ∈ Σ∗ is in L,
all we need to do is watch which enumerator outputs x.1 Decidable languages correspond to algorithmically
solvable problems.

4.2.1 Non-RE languages

The cardinality of the set of all Turing machine descriptions is ℵ0. This is because a Turing machine can be
described through a finite number of bits that model its states and its transitions, and such a description can
be read as a natural number (these numbers are known as Gödel numbers). On the other hand, there are ℵ1

languages over Σ. Therefore, there are non-TR (non-RE) languages.

1Imagine two big ‘spigots,’ one pouring out the contents of L and another pouring out the contents of L. One can decide
membership of x ∈ L by watching which spigot emits x.

9

This means that there exist languages in which membership testing cannot be carried out by any
Turing machine.

4.3 Acceptance (ATM) is undecidable (important!)

This is one of the most fundamental results that we shall encounter in our study of Turing machines and
computation. Define

ATM = {〈M,w〉 | M is a Turing machine that accepts string w}.

Deciding membership in ATM is tantamount to asking “does a given Turing machine M accept a string w?”
We prove this set to be undecidable through contradiction, as follows:

• Suppose there exists a decider H for ATM . H expects to be given a Turing machine M and a string
w. Notice that “giving H a Turing machine” means “giving it a character string representing a Turing
machine program.” Hence, in reality, we will be feeding it 〈M,w〉 as mentioned in Section 3.1.

• Build a program called D as follows:

− D takes a single argument M .
− As its first step, D invokes H on 〈M,M〉.2
− If H(〈M,M〉) rejects, D(〈M〉) accepts.
− If H(〈M,M〉) accepts, D(〈M〉) rejects.

• Now we can ask what D(〈D〉) will result in (to preserve the clarity of our arguments, the reader is invited
to suppress any occurrence of 〈. . .〉 in the text below):

− The D(〈D〉) “call” turns into an H(〈D,D〉) call.

− Suppose H(〈D,D〉) rejects. In that case, D(〈D〉) accepts.
− But, according to the advertised behavior of H — which is that it is a decider for ATM — the fact

that H(〈D,D〉) rejects means that D is not a Turing machine that will accept 〈D〉, or that
D(〈D〉) rejects!

− Suppose H(〈D,D〉) accepts. In that case, D(〈D〉) rejects.
− But, according to the advertised behavior of H — which is that it is a decider for ATM — the fact

that H(〈D,D〉) accepts means that D is a Turing machine that accepts 〈D〉, or that
D(〈D〉) accepts!

Therefore, we obtain a contradiction in both cases.
Hence, the claimed decider H for ATM cannot exist, or

The acceptance problem for Turing machines is undecidable.

10

Decider for A_TM

for
Decider

Halt_TM

Run
M on w

accept

reject

accept

reject

accept

reject

M

w

Figure 1: ATM to HaltTM reduction. Notice that if we assume that the inner components – namely the OR-
gate, the ability to run M on w, and DHaltT M

exist, then DATM can be constructed; and hence, DHaltT M

cannot exist!

4.4 Halting (HaltTM) is undecidable (important!)

The golden rule of reduction is: Reduce an existing (“old”) undecidable problem to the
given (“new”) problem. This way, if we assume that the new problem is decidable, we would
be forced to conclude that the existing undecidable problem is decidable — a contradiction. See
Figure 1 where the “new problem” is HaltTM , and by assuming that it is decidable, we can assume
the existence of the decider DHaltT M

, and using it, build a decider for ATM , the “old problem”
already shown to be undecidable; this obtains a contradiction. Hence, DHaltT M

cannot exist.

4.4.1 Don’t get reduction backwards!

We should not go by the English language meaning of the term “reduction” that can lead us astray. Getting
the meaning of ‘reduction’ backwards means trying to reduce the new problem to an existing (“old”) problem.
This does not help us. To see why, assume this to be the right direction. Then we will be trying to employ
proof by contradiction (following reduction) in the following futile way: “IF the existing undecidable problem
is decidable, THEN we would have shown the new problem to be decidable.” However, this is a statement of
the form “IF false, THEN assert X.” Clearly, in this case, we cannot assert X.

4.4.2 An introduction to mapping reduction

Reduction is an abbreviation for mapping reduction — a concept fully explored in Section 4.5. In this section,
we informally apply the (mapping) reduction idea to show that HaltTM is undecidable. Define

HaltTM = {〈M,w〉 | M is a Turing machine that halts on string w}.

We show HaltTM to be undecidable as follows:
2Basically, we feed 〈M〉 twice over, just to ‘please’ H that expects two arguments.

11

Suppose not; i.e., there is a decider for HaltTM . Let’s now build a decider for ATM (call it DAT M
).

DAT M
’s design will be as follows:

− DAT M
will first feed M and w to DHaltT M

, the claimed decider for HaltTM .
− If DHaltT M

goes to acceptDHaltT M
, DAT M

knows that it can safely run M on w, which it does.
− If M goes to acceptM , DAT M

will go to acceptDAT M
.

− If M goes to rejectM , or if DHaltT M
goes to rejectDHaltT M

, DAT M
will go to rejectDAT M

.

Notice that we have labeled the accept and reject states of the two machines DHaltT M
and DAT M

. After one
becomes familiar with these kinds of proofs, higher-level proof sketches are preferred. Here is such a higher-level
proof sketch:

Build a decider for ATM . This decider accepts input 〈M,w〉 and runs Halt decider (if it exists) on
it. If this run accepts, then we can safely (without the fear of looping) run M on w, and return the
accept/reject result that this run returns; else return “reject.”

A diagram that illustrates this construction is in Figure 1. Therefore, we conclude that

the Halting problem for Turing machines is undecidable.

Two observations that the reader can make after seeing many such proofs (to follow) are the following:

• One cannot write statements of the form “if f(x) loops, then ...” in any algorithm, because termination is
not detectable. Of course, one can write “if f(x) halts, then” This asymmetry is quite fundamental,
and underlies all the results pertaining to halting / acceptance.

• One cannot examine the code (“program”) of a Turing machine and decide what its language is. More
precisely, one cannot build a classifier program Q that, given access only to Turing machine programs Pm

(which encode Turing machines m), classify the m’s into two bins (say “good” and “bad”) according to
the language of m. Any such classifier will have to classify all Turing machines as “good” or all as “bad,
” or itself be incapable of handling all Turing machine codes (not be total).

4.5 Mapping reductions

Definition: A computable function f : Σ∗ → Σ∗ is a mapping reduction from A ⊆ Σ∗ into B ⊆ Σ∗ if for all
x ∈ Σ∗, x ∈ A⇔ f(x) ∈ B.
Definition: A polynomial-time mapping reduction ≤P is a mapping reduction where the reduction function f
has polynomial-time asymptotic upper-bound time complexity.3

See Figure 2 which illustrates the general situation that A maps into a subset denoted by f(A) of B, and
members of A map into f(A) while non-members of A map outside of B (that means they map outside of even
B \ f(A)). Also note that A and B need not be disjoint sets, although they often are. A mapping reduction
can be (and usually is) a non-injection and non-surjection; i.e., it can be many to one and not necessarily onto.
It is denoted by ≤m. By asserting A ≤m B, the existence of an f as described above is also being asserted.
Typically mapping reductions are used as follows:

• Let A be a language known to be undecidable (“old” or “existing” language).
• Let B be the language that must be shown to be undecidable (“new” language).

3Using the familiar notation O(. . .) for asymptotic upper-bounds, polynomial-time means O(nk) for an input of length n, and
k > 1.

12

A BSigma*

f

f

f(A)

Figure 2: Illustration of mapping reduction A ≤M B

• Find a mapping reduction f from A into B.
• Now, if B has a decider DB , then we can decide membership in A as follows:

− On input z, in order to check if z ∈ A, find out if DB(f(z)) accepts or not. If it accepts, then z ∈ A,
and if it rejects, then z /∈ A.

4.5.1 Mapping Reduction From ATM to HaltTM

We first illustrate mapping reductions by taking A = ATM and B = HaltTM with respect to Figure 2. Function
f takes a member of ATM , namely a pair 〈M,w〉, as input, and prints out 〈M ′

, w〉 on the tape as its output.
Function f , in effect, generates the text of the program M

′
from the text of the program M . Here is the makeup

of M
′
:

M
′
(x) =

Run M on x

If the result is “accept,” then “accept”
If the result is “reject,” then loop

Notice that the text of M
′

has “spliced” within itself a copy of the text of program M that was input. Mapping
reductions such as f illustrated here need not “run” the program they manufacture; they simply accept a
program such as M , and a possible second input, such as w, and manufacture another program M

′
(and also

copy over w) and then consider their task done! The reason such a process turns out to be useful is for the
following reasons:

Suppose someone were to provide a decider for HaltTM . The mapping reduction f then makes
it possible to obtain a decider for ATM . When given 〈M,w〉, this decider will obtain 〈M ′

, w〉 =
f(〈M,w〉), and then feed it to the decider for HaltTM .

We have to carefully argue that f is a mapping reduction. We will be quite loose about the argument types
of f (namely that it maps Σ∗ to Σ∗; we will assume that any 〈M,w〉 pair can be thought to be a string, and
hence a member of a suitable Σ∗. The proof itself is depicted in Figure 3.

13

How a decider for A_TM is obtained:

Step 1: Here is the initial tape.

--

| M | w |

--

Step 2. Build M’ and put it on the tape

--

| M | w | ..build M’ that incorporates M here.. |

--

Step 3. Put w on the tape.

| M | w | ..build M’ that incorporates M here.. | ..put w here.. |

Step 4. Run Halt_TM_decider on M’ and w and return its decision

| M | w | ..build M’ that incorporates M here.. | ..put w here.. |

DHaltT M
(M

′
, w) =

{
accepts ⇒ M

′
halts on w ⇒ M accepts w

rejects ⇒ M
′
doesn′t halt on w ⇒ M doesn′t accept w

Figure 3: How the mapping reduction from ATM to HaltTM works

4.5.2 Mapping reduction From ATM to ETM

We show that
ETM = {〈M〉 | M is a TM and L(M) = ∅}

is undecidable through a mapping reduction that maps 〈M,w〉 into 〈M ′〉, as explained in Figure 4.

4.5.3 Mapping reduction from ATM to RegularTM

Similarly, we can prove RegularTM to be undecidable by building the M
′

shown in Figure 5.

4.6 Undecidable problems are “ATM in disguise”

The techniques discussed here lie at the core of the notion of “problem solving” in that they help identify which
problems possess algorithms and which do not.

Undecidable problems are ATM in disguise. We leave you with this thought, hoping that it will provide you
with useful intuitions.

14

M’(x) {

if x <> w then loop ; // could also goto reject_M’ here

Run M on w ;

If M accepts w, goto accept_M’ ;

If M rejects w, goto reject_M’ ; }

How a decider for E_TM is obtained:

Step 1: Build above M’ and put it on the tape

--

| M | w | ..build M’ that incorporates M and w here.. |

--

Step 2: Run E_TM_decider on M’ and return its decision

--

| M | w | ..build M’ that incorporates M and w here.. |

--

DeciderET M
(M

′
) =

{
accepts ⇒ L(M

′
) is empty ⇒ M does not accept w

rejects ⇒ L(M
′
) is not empty ⇒ M accepts w

Figure 4: Mapping reduction from ATM to ETM

M’(x) {

if x is of the form 0^n 1^n then goto accept_M’ ;

Run M on w ;

If M accepts w, goto accept_M’ ;

If M rejects w, goto reject_M’ ; }

DeciderRegularT M
(M

′
) =

accepts ⇒ L(M

′
) is regular

⇒ Language isΣ
′ ⇒ M accepts w

rejects ⇒ L(M
′
) is not regular

⇒ Language is 0n1n ⇒ M does not accept w

Figure 5: Mapping reduction from ATM to RegularTM

15

	Cardinalities of Infinite Sets
	Correspondence: Total Bijection f:AB
	Schröder-Bernstein (SB) Theorem
	Counting the number of points in a 4-dimensional grid
	Counting the number of C programs
	Counting the Powerset of Nat
	Counting Reals
	`Fixing' the proof a little bit
	Cardinality of 2Nat and NatBool

	Undecidability of the Halting Problem
	Some Decidable and Undecidable Problems
	An assortment of decidable problems
	Assorted undecidable problems

	Undecidability Proofs
	Turing recognizable (or recursively enumerable) sets
	Dovetailing and systematic enumeration methods

	Recursive (or decidable) languages
	Non-RE languages

	Acceptance (ATM) is undecidable (important!)
	Halting (HaltTM) is undecidable (important!)
	Don't get reduction backwards!
	An introduction to mapping reduction

	Mapping reductions
	Mapping Reduction From ATM to HaltTM
	Mapping reduction From ATM to ETM
	Mapping reduction from ATM to RegularTM

	Undecidable problems are ``ATM in disguise''

