CS 3100 – Models of Computation – Fall 2011 Assignment 10 Solutions

1. (15 points) Applying the Schröder-Bernstein (SB), show that the number of points in a 3-dimensional grid over *Nat*,

$$3dGrid = \{ \langle x, y, z \rangle \mid x, y, z \in Nat \}$$

is the same as those in a 2-dimensional grid over Nat,

$$2dGrid = \{ \langle x, y \rangle \mid x, y \in Nat \}.$$

Here of course, $Nat = \{0, 1, 2, ...\}.$

These being infinite sets, if we can find a correspondence (1-1, total, and onto) mapping from one set to the other, they would have the same cardinality.

Finding the above correspondence is made easy by the S-B theorem, requiring us to find only 1-1, total, and into maps both ways. Here are those maps:

- 3dGrid → 2dGrid: λ(x, y, z) : (2^x × 3^y × 5^z, 0) which maps the triples (x, y, z) uniquely onto the x axis, keeping the y coordinate always 0. This is a total, 1-1, and 'into' map. It is total because it is defined for all (x, y, z). It is 1-1 because it never collapses two distinct (x, y, z) into the same image. It is 'into' because it never hits all the range points. itemize
- $2dGrid \rightarrow 3dGrid: \lambda(x, y) : \langle x, y, 0 \rangle$, which simply puts 0 in the third coordinate. This is also total, 1-1, and into.
- 2. (20 points) Using the SB-theorem, present a way to count regular expressions over the alphabet $\{a, b\}$, expressing your answer as a cardinal number.

This is an infinite set. Let us find a correspondence to Nat, thus showing that Reg, the set of regular expressions over $\{a, b\}$ has cardinality \aleph_0 .

- Reg → Nat: Encode the ASCII characters that make up the regular expression string into a Nat by concatenating the ASCII codes of each symbol. Example: (a+b)* becomes the number in hex: 289743982942, by consulting a standard ASCII table.
- Nat → Reg: For each natural number in Binary format, generate the RE under a homomorphism lambda
 x: b if x==1 else a.
- 3. (20 points) What is the cardinality of A_{CFG} ? Prove your result using the SB theorem. Hint: find a way to map $\langle G, w \rangle$ into Nat; then find a way to map Nat into $\langle G, w \rangle$ pairs using a numeric-order enumeration.

$$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a } CFG \text{ and } w \text{ is a string in the language of } G \}$$

Again, map each ⟨G, w⟩ pair into a natural number by taking the string represented by G (written out in some standard format) concatenated with the string represented by w. One caveat: we don't ever want ⟨G₁, w₁⟩ and ⟨G₂, w₂⟩ to map to the same Nat by having G₁ be a prefix of G₂, which can allow ⟨G₁, w₁⟩ and ⟨G₂, w₂⟩ to read the same. This can be avoided by first converting G into a Nat, say x, then w into another Nat, say y, and encoding them as 2^x × 3^y.

- For sending Nat into $\langle G, w \rangle$ pairs, simply pick an arbitrary grammar G as the first component. The string w can then be generated according to nthnumeric from each Nat.
- 4. (10 points) Show that $INFINITE_{DFA}$ is a decidable language.

To show that something is decidable, present an algorithm (pseudo-code plus English, or even entirely English is fine, because there will be no ambiguity). Ideally we must use a bulletted style to facilitate reading/grading. I often prefer this style made-up to look like a C function:

```
decider_inf_dfa(DFA D) {
```

- * If D is not syntactically correctly encoded, then REJECT
- * Build the finite-state machine (DFA) graph of D
- * Check whether D has a reachable loop which there is a reachable final state (the final state may be within the loop, or the loop may be en-route the final state) If so, ACCEPT else REJECT

```
}
```

Now, decider_inf_dfa describes a TM that serves as the desired decider.

5. (10 points) Show that $NOODD_{DFA}$ is decidable.

```
decider_noodd_dfa(DFA D) {
 * If D is not syntactically correctly encoded, then REJECT
 * Generate D', a DFA that accepts all odd-length strings over the given alphabet
 * Intersect D with D', and ACCEPT if the intersection is empty; REJECT otherwise.
}
```

Now, decider_nood_dfa describes a TM that serves as the desired decider.

6. (10 points) Show that A_{CFG} is decidable.

Employ any parsing algorithm as the decider.

- 7. (10 points) Describe the working of an enumerator TM for NEQ_{CFG} in bulletted steps.
 - Given two CFGs G_1 and $G_2,$ enumerate all strings over Σ^* in numeric order
 - Employ G_1 and G_2 to parse each string
 - List the $\langle G_1, G_2 \rangle$ pair whenever the parsing results on some string differs.
 - This is an enumerator TM for NEQ_{CFG} .