
CS 3100 – Models of Computation – Fall 2011
Assignment 10 Solutions

1. (15 points) Applying the Schröder-Bernstein (SB), show that the number of points in a 3-dimensional
grid over Nat,

3dGrid = {〈x, y, z〉 | x, y, z ∈ Nat}

is the same as those in a 2-dimensional grid over Nat,

2dGrid = {〈x, y〉 | x, y ∈ Nat}.

Here of course, Nat = {0, 1, 2, . . .}.
These being infinite sets, if we can find a correspondence (1-1, total, and onto) mapping from one set to the
other, they would have the same cardinality.

Finding the above correspondence is made easy by the S-B theorem, requiring us to find only 1-1, total, and
into maps both ways. Here are those maps:

• 3dGrid→ 2dGrid: λ(x, y, z) : 〈2x×3y×5z, 0〉 which maps the triples (x, y, z) uniquely onto the x axis,
keeping the y coordinate always 0. This is a total, 1-1, and ’into’ map. It is total because it is defined
for all (x, y, z). It is 1-1 because it never collapses two distinct (x, y, z) into the same image. It is ’into’
because it never hits all the range points.

itemize

• 2dGrid→ 3dGrid: λ(x, y) : 〈x, y, 0〉, which simply puts 0 in the third coordinate. This is also total, 1-1,
and into.

2. (20 points) Using the SB-theorem, present a way to count regular expressions over the alphabet {a, b},
expressing your answer as a cardinal number.

This is an infinite set. Let us find a correspondence to Nat, thus showing that Reg, the set of regular
expressions over {a, b} has cardinality ℵ0.

• Reg → Nat: Encode the ASCII characters that make up the regular expression string into a Nat
by concatenating the ASCII codes of each symbol. Example: (a+b)* becomes the number in hex:
289743982942, by consulting a standard ASCII table.

• Nat→ Reg: For each natural number in Binary format, generate the RE under a homomorphism lambda
x: b if x==1 else a.

3. (20 points) What is the cardinality of ACFG? Prove your result using the SB theorem. Hint: find a way
to map 〈G,w〉 into Nat; then find a way to map Nat into 〈G,w〉 pairs using a numeric-order enumeration.

ACFG = {〈G,w〉 | G is a CFG and w is a string in the language of G}

• Again, map each 〈G,w〉 pair into a natural number by taking the string represented by G (written out in
some standard format) concatenated with the string represented by w. One caveat: we don’t ever want
〈G1, w1〉 and 〈G2, w2〉 to map to the same Nat by having G1 be a prefix of G2, which can allow 〈G1, w1〉
and 〈G2, w2〉 to read the same. This can be avoided by first converting G into a Nat, say x, then w into
another Nat, say y, and encoding them as 2x × 3y.



• For sending Nat into 〈G,w〉 pairs, simply pick an arbitrary grammar G as the first component. The string
w can then be generated according to nthnumeric from each Nat.

4. (10 points) Show that INFINITEDFA is a decidable language.

To show that something is decidable, present an algorithm (pseudo-code plus English, or even entirely English
is fine, because there will be no ambiguity). Ideally we must use a bulletted style to facilitate reading/grading.
I often prefer this style made-up to look like a C function:

decider_inf_dfa(DFA D) {
* If D is not syntactically correctly encoded, then REJECT
* Build the finite-state machine (DFA) graph of D
* Check whether D has a reachable loop which there is a reachable final state
(the final state may be within the loop, or the loop may be en-route the final state)
If so, ACCEPT
else REJECT

}

Now, decider_inf_dfa describes a TM that serves as the desired decider.

5. (10 points) Show that NOODDDFA is decidable.

decider_noodd_dfa(DFA D) {
* If D is not syntactically correctly encoded, then REJECT
* Generate D’, a DFA that accepts all odd-length strings over the given alphabet
* Intersect D with D’, and ACCEPT if the intersection is empty; REJECT otherwise.

}

Now, decider_nood_dfa describes a TM that serves as the desired decider.

6. (10 points) Show that ACFG is decidable.

Employ any parsing algorithm as the decider.

7. (10 points) Describe the working of an enumerator TM for NEQCFG in bulletted steps.

• Given two CFGs G1 and G2, enumerate all strings over Σ∗ in numeric order

• Employ G1 and G2 to parse each string

• List the 〈G1, G2〉 pair whenever the parsing results on some string differs.

• This is an enumerator TM for NEQCFG.

2


