
CS 3100 – Models of Computation – Fall 2011 – Notes for L22
Contrapositives Fact: Suppose we have a theorem of the form A ⇒ B. Then we have also a contrapositive
theorem: ¬B ⇒ ¬A.
A Useful Theorem about Regular Sets
Theorem “Immiscible Union”: Suppose A ∩ B = ∅ and A is non-regular, and B is regular (there is a DFA for
it called DFAB). Then A ∪B is non-regular.
Proof: Suppose not. Then there is a DFA for A ∪ B—call it DA∪B . Build a DFA for A by taking DA∪B ∩
((DFAB)). This is a DFA for A (call it DA) because it accepts exactly when DA∪B accepts and DFAB rejects
– so must be a string exactly within A (since there is no overlap between A and B). This is a contradiction
because A is non-regular, so it can’t have a DFA.
Pumping Lemma
The regular pumping lemma we studied is of the form Regular(L)⇒ RHS where

RHS =
∃n ∈ N :
∀w ∈ L : |w| ≥ n

⇒
∃x, y, z ∈ Σ∗ :
∧ w = xyz
∧ y 6= ε
∧ |xy| ≤ n
∧ ∀k ≥ 0 : xykz ∈ L.

Then we also have a theorem ¬RHS ⇒ ¬Regular(L). This is how the Pumping Lemma works.
Now, ¬RHS for us is:

∀n ∈ N :
∃w ∈ Lsuspect : |w| ≥ n

∧
∀x, y, z ∈ Σ∗ :
∨ w 6= xyz
∨ y = ε
∨ |xy| > n
∨ ∃k ≥ 0 : xykz /∈ Lsuspect.

Notice that we have to pick all x, y, z.
Revisit U versus Y (Asg8 Solution posted online)
The basicproblem was to show that

Luneq = {0p1q | p 6= q}

is not regular.
An INCORRECT PROOF would be as follows.
• Let there be an m-state DFA
• Pick a string 0m1m+1

• This is in Luneq

• Pick y to be the string “0” i.e. of length 1
• Then when we pump up, we get 0m+11m+1 which is not in Luneq
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• Problem with this proof: we DID NOT establish ¬RHS. For ¬RHS, we need to show for all y. In this
selection, if y = “00” were chosen, pump up would lead to 0m+21m+1 which still is in Luneq

• So the “U versus Y” argument picked 0m1m+m! that is guaranteed to have a pump within 0 such that we
will get to 0m+m!1m+m!.

Revisit U versus Y (Asg8 Solution posted online)
A niftier proof for Luneq being non-regular:
• The complement of Luneq is {0n1n | n ≥ 0} ∪ (0 + 1)∗1(0 + 1)∗0(0 + 1)∗ (see Asg8 solutions).
• Let us refer to (0 + 1)∗1(0 + 1)∗0(0 + 1)∗ by L.1.0. and to {0n1n | n ≥ 0} by L0n1n.
• Note that there is no overlap between L0n1n and L.1.0..
• Thus, by using the Immiscible Union theorem, if we prove that L0n1n is non-regular, then the complement

of Luneq would be shown non-regular.
• But we know that L0n1n is non-regular (easier PL proof).
• Finally, if the complement of Luneq is non-regular, then Luneq is also non-regular.

When do formal machines accept what?
Formal machines in automata theory have different acceptance conditions:
• DFA and NFA:

– Accept by final state (the control must be in a final state)
– They must fully read the input

• (N)PDA:
– Accept by final state or accept by empty stack (you have to say which convention is being used in

your PDA)
– They must fully read the input

• TM:
– Accept by final state
– No need to fully read the input

Why does this difference exist between TMs and other machines? Well, TMs capture the notion of a
computation where the notion of halting is undecidable. It also helps model computations where the input has
“don’t cares” that need not be read before a decision can be made. In any case, that’s what it is. We will now
study details pertaining to PDA.
PDA Acceptance: by Final State or Empty Stack There are two different notions of acceptance of a
string by a PDA. According to the first, a PDA accepts a string when, after reading the entire string, the PDA
is in a final state. According to the second, a PDA accepts a string when, after reading the entire string, the
PDA has emptied its stack.
Acceptance by final state and empty stack The PDAs we’ve seen so far accept by final state. There is
another useful notion: acceptance by empty stack. To highlight the difference, we call these languages L(P ) and
N(P ) respectively. For such PDAs, a string w is in its language exactly when the input is entirely consumed
and an empty stack results in doing so.
Conversion of P1 to P2 ensuring L(P1) = N(P2) Given a PDA P1 that accepts by final state, we can obtain
a PDA P2 that accepts by empty stack such that N(P2) = L(P1), simply by ensuring that P2 has an empty
stack exactly when P1 reaches a final state (for the same input w seen by both these PDAs).
Conversion of P1 to P2 ensuring N(P1) = L(P2) Given a PDA that is defined according to the “accept by
empty stack” criterion, how do we convert it to a PDA that accepts by final state? A simple observation tells
us that the stack can become empty at any control state. Therefore, the trick is to start the PDA with a new
bottom of stack symbol z00. Under normal operation of the PDA, we do not see z00 on top of the stack, as it
will be occluded by the “real” top of stack z0. However, in any state, if z00 shows up on top of the stack, we add

2



a transition to a newly introduced final state qF . qF is the only final state in the new PDA. Hence, whenever
the former PDA drains its stack, the new PDA ends up in state qF .
Direct Conversion of PDAs to CFGs This algorithm will be the subject of a homework. It will use the
notion of acceptance by empty stack.
Arguing Consistency and Completeness (Asg 9)
Suppose we have the grammar:

S -> ( W S | e

W -> ( W W | )

An outline of consistency and completeness may be found in the book chapters online.
Closure and Decidability

In this section, we catalog the main results you should remember, plus some justifications. Details are
omitted for now.

1. Given a CFG, it is decidable whether its language is empty. Basically, if you find that S is not generating,
the language of the grammar is empty! It is the bottom-up marking algorithm discussed above.

2. Given a CFG, it is not decidable whether its language is Σ∗.

3. The equivalence between two CFGs is not decidable. This follows from the previous result, because one
of the CFGs could easily be encoding Σ∗.

4. Given a CFG, whether the CFG is ambiguous is not decidable. A standard reduction is from the Post
Correspondence Problem.

5. Given a CFG, whether the CFG generates a regular language is not decidable.

6. CFLs are closed under union, concatenation, and starring because these constructs are readily available
in the CFG notation.

7. CFLs are closed under reversal because we know how to “reverse a CFG.”

8. CFLs are not closed under complementation, and hence also not closed under intersection.

9. CFLs are closed under intersection with a regular language. This is because we can perform the product
state construction between a PDA and a DFA.

10. CFLs are closed under homomorphism.

Some Important Points Visited
We know that if L is a regular language, then L is a context-free language, but not vice versa. Therefore,

the space of regular languages is properly contained in the space of context-free languages. We note some facts
below:

• It does not follow from the above that the union of two CFLs is always a non-regular CFL; it is not so, in
general. Think of {0n1n | n ≥ 0} and the complement of this language, both of which are context-free,
and yet, their union is Σ∗ which is context-free, but also regular.

• The union of a context-sensitive language and a context-free language can be a regular language. Consider
the languages Lww and Lww of Section ??.
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All this is made clear using a real-world analogy (see book chapters online).
Lost Venus Probe

Hoare [?] cites the story of a Venus probe that was lost in the 1960’s due to a FORTRAN programming
error. The error was quite simple - in hindsight. Paraphrased, instead of typing a “DO loop” as

DO 137 I=1,1000
...
137 CONTINUE,

the programmer typed

DO 137 I=1 1000
...
137 CONTINUE.

The missed comma caused FORTRAN to treat the first line as the assignment statement DO137I=11000 —
meaning, an assignment to a newly introduced variable DO137I, the value 11000. The DO statement essentially
did not loop 1000 times as was originally intended! FORTRAN’s permissiveness was quickly dispensed with
when the theory of context-free languages lead the development of “Algol-like” block-structured languages.

Sarcastically viewed, progress in context-free languages has helped us leapfrog into the era of deep semantic
errors in programs, as opposed to unintended simple syntactic errors that caused programs to crash. The
computation engineering methods discussed in later chapters in this book do help weed out semantic errors,
which are even more notoriously difficult to pin down. We hope for the day when even these errors appear to
be as shallow and simpleminded as the forgotten comma.
The best for the last

Lww = {ww | w ∈ {0, 1}∗} is not context-free. We will show it (after midterm-2) using the CFL Pumping
Lemma. However, its complement is! Let’s derive its CFG! (It’s in the book and also in notes19 as a practice
problem).
Tips for Midterm-2
Please expect these concepts to be examined (a good checklist for you):

[ ] Know how to tell between purely left-linear, purely right-linear, and the dangers of mixed linearity.
[ ] Know how to reverse a CFG
[ ] Get the Pumping Lemma facts straight
[ ] Be able to design simple PDAs and CFGs
[ ] Converting CFG to PDA (not the other way)
[ ] Consistency and completeness of CFGs with respect to a language
[ ] Ambiguity, inherent ambiguity. Also know where if E then Matched else Unmatched is needed (think

of a simple sentence; it was a class question; the answer is not hard)
[ ] Be able to design simple Turing machines
[ ] Closure results and how to use them
[ ] Be able to classify languages as being regular or context-free or non context-free
[ ] Know about the Chomsky Hierarchy (notes19)
[ ] Know where non-determinism makes a difference
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