
CS 3100 – Models of Computation – Fall 2011 – Notes for L21

1 Turing/Church Thesis

Two formalisms, namely Turing machines and Church’s Lambda Calculus, both serve to define what is effectively
(mechanically) computable. There are plenty of online resources that discuss the origins of these notions. Below
are some historical perspectives from the Encyclopedia of Philosophy web site stanford-ency-phil. We now
provide direct excerpts from this web site.
(Begin excerpts)

The Princeton logician Alonzo Church had slightly outpaced Turing in finding a satisfactory definition of
what he called effective calculability. Church’s definition required the logical formalism of the Lambda calculus.
This meant that from the outset Turing’s achievement merged with and superseded the formulation of Church’s
Thesis, namely the assertion that the Lambda calculus formalism correctly embodied the concept of effective
process or method. Very rapidly it was shown that the mathematical scope of Turing’s computability coincided
with Church’s definition (and also with the scope of the general recursive functions defined by Gödel). Turing
wrote his own statement (Turing 1939, p. 166) of the conclusions that had been reached in 1938; it is in the
Ph.D. thesis that he wrote under Church’s supervision, and so this statement is the nearest we have to a joint
statement of the Church Turing thesis:

A function is said to be effectively calculable if its values can be found by some purely mechanical
process. Although it is fairly easy to get an intuitive grasp of this idea, it is nevertheless desirable
to have some more definite, mathematically expressible definition. Such a definition was first given
by Gödel at Princeton in 1934. These functions were described as general recursive by Gödel.
Another definition of effective calculability has been given by Church who identifies it with lambda-
definability. The author [i.e. Turing] has recently suggested a definition corresponding more closely
to the intuitive idea. It was stated above that a function is effectively calculable if its values can
be found by a purely mechanical process. We may take this statement literally, understanding
by a purely mechanical process one which could be carried out by a machine. It is possible to
give a mathematical description, in a certain normal form, of the structures of these machines.
The development of these ideas leads to the author’s definition of a computable function, and to
an identification of computability with effective calculability. It is not difficult, though somewhat
laborious, to prove that these three definitions are equivalent.

Church accepted that Turing’s definition gave a compelling, intuitive reason for why Church’s thesis was
true. The recent exposition by Davis (2000) emphasizes that Gödel also was convinced by Turing’s argument
that an absolute concept had been identified (Gödel 1946). The situation has not changed since 1937 (see how
Prof. Geoff Draper viewed it - Figure 1). By the way, Professor Geof Draper (Univ of Utah alum) has a fabulous
set of cartoons – check out at http://draperg.cis.byuh.edu/cartoons/.

2 Formal Definition of a Turing machine

A Turing machine M is a structure (Q,Σ,Γ, δ, q0, B, F). The finite state control of M ranges over the control
states in Q, beginning at the initial control state q0 ∈ Q. States F ⊆ Q of M are called final states, and are
used to define when a machine accepts a string. The input on which M operates is initially presented on the
input tape. It is a string over the input alphabet Σ. Once started, it is possible that a Turing machine may

1

stanford-ency-phil
http://draperg.cis.byuh.edu/cartoons/

290 15 Turing Machines

Figure 1: Alan Turing’s “light bulb moment” – Prof. Geoff Draper drew this cartoon for my book

never halt; it may keep zigzagging on the tape, writing symbols all over, and running amok, much like many
tricky programs do in real life. A Turing machine cannot manufacture new symbols ad infinitum - so all the
symbols written by a Turing machine on its tape do belong to a finite tape alphabet, Γ. Notice that Σ ⊂ Γ,
since Γ includes the blank symbol B that is not allowed within Σ. We assume that a Turing machine begins its
operation scanning cell number 0 of a doubly-infinite tape (meaning that there are tape cells numbered +x or
−x for any x ∈ Nat); more on this is in the following section. A fact to remember is this: in order to feed the
string ε to a TM, one must present to the Turing machine a tape filled with blanks (B). However, some authors
alter this convention slightly, allowing ε to be fed to a Turing machine by ensuring that, in the initial state, the
symbol under the tape head is blank (B) (i.e., the rest of the tape could contain non-blank symbols). In any
case, a normal Turing machine input is such that for every i ∈ length(w), w[i] 6= B is presented on tape cell i,
with all remaining tape cells containing B, and the head of the Turing machine faces w[1] at the beginning of
a computation.

A TM may be deterministic or nondeterministic. The signature of δ for a deterministic Turing machine
(DTM) is

δ : Q× Γ→ Q× Γ× {L,R}.
This signature captures the fact that a TM can be in a certain state q ∈ Q and looking at a ∈ Γ. It can then
write a

′
on the tape in lieu of a, move to a state q

′
, and move its head left (L), or right (R), depending on

whether δ(q, a) = 〈q′
, a

′
, L〉 or δ(q, a) = 〈q′

, a
′
, R〉, respectively.

For an NDTM, δ(q, a) returns a set of next control states, tape symbol replacements, and head move
directions. The signature of δ for a nondeterministic Turing machine (NDTM) is

δ : Q× Γ→ 2Q×Γ×{L,R}.

Think of a nondeterministic Turing machine as a C program where instead of the standard if-then-else construct,
we have an if/fi construct of the following form:

2

if :: condition_1 -> action_1

:: condition_2 -> action_2

:: ...

:: condition_n -> action_n

fi

The intended semantics is as follows. Each condition may be a Boolean expression such as (x > 0). There
may be more than one condition becoming true at any given time. In that case, one of the conditions is
nondeterministically chosen. The actions can be goto, assignment, while-loops, etc., as in a normal C
program. With just this change to the C syntax, we have a class of nondeterministic C programs that are
equivalent to nondeterministic Turing machines. Nondeterministic Turing machines are powerful conceptual
devices that play a fundamental role in the study of complexity theory.

In these notes, we shall treat Turing machines and programs synonymously. Therefore, “build a
program” will also mean “build a Turing machine.”

2.1 Two stacks+control = Turing machine

A TM can be viewed as finite-state control coupled with two stacks, by modeling the infinite tape using two
stacks:

• When a TM goes one step left from its current position, the tape segment to the left of the head shrinks
by one cell while the segment to the right of the head grows by one segment. This can be viewed in terms
of popping the left-hand stack and pushing the right-hand stack of the finite-state control.

• A TM taking one step to the right can be viewed in terms of popping the right-hand stack and pushing
onto the left-hand stack.

3 Acceptance, Halting, Rejection

Given a Turing machine M = (Q,Σ,Γ, δ, q0, B, F), the transition function δ is partial - it need not be defined
for all inputs and states. When not defined, the machine becomes “stuck” - and is said to halt. Therefore, note
that a TM can halt in any state. Also, by convention, no moves are defined out of the control states within
F . Therefore, a TM always halts when it reaches a state f ∈ F . Here are further definitions:

• A TM accepts when halting at f ∈ F .

• A TM rejects when halting in any other state outside F .

• A TM loops when not halting.

3.1 “Acceptance” of a TM closely examined

Compared to DFAs and PDAs, the notion of acceptance for a TM is unusual in the following sense: a TM can
accept an input without fully reading the input—or, in an extreme situation, not even reading one cell of the
input (e.g., if q0 ∈ F)! Hence, curiously, any TM with q0 ∈ F has language Σ∗. On the other hand, if a TM
never accepts, its language is ∅. This can be the result of the TM looping on every input, or the TM getting
stuck in a reject state for every input. As a final illustration, given an arbitrary language L1, a TM that accepts
any string within the set L1 and does not accept (loops or rejects) strings outside L1, has L1 as its language.

3

3.2 Instantaneous descriptions

While capturing the ‘snapshot’ of a TM in operation, we need to record the control state of the machine, the
contents of the tape, and what the head is scanning. All these are elegantly captured using an instantaneous
description containing the tape contents, w, with a single state letter q placed somewhere within it. Specifically,
suppose that the string lqr represents that the tape contents is lr, the finite-state control is in state q, and the
head is scanning r[0]. The initial ID is q0w, for initial input string w. We define `, the ‘step’ function that
takes IDs to IDS, as follows:

l1par1 ` l1bqr1 if and only if δ(p, a) = (q, b, R). The TM changes the tape cell contents a to b and moves
right one step, facing r1[0], the first character of r1.
Similarly, l1cpar1 ` l1qcbr1 if and only if δ(p, a) = (q, b, L). The TM changes an a to a b and moves left
one step to now face c, the character that was to the left of the tape cell prior to the move.

We define the language of a TM M using `∗:

L(M) = {w | q0w `∗ lqfr, for qf ∈ F, and l, r ∈ Σ∗}.

In other words, a TM that starts from the initial ID q0w and attains an ID containing qf (namely lqfr, for
some l and r in Σ∗) ends up accepting w.

4 Examples

We now present short examples that illustrate various concepts about Turing machines (Section 4.1). This is
followed by a deterministic Turing machine that accepts strings of the form w#w for w ∈ Σ∗ (Section 4.2).
Section 5 introduces NDTMs, and Section 5.2 presents an NDTM that accepts strings of the form ww.

Turing machines are specified fully at the implementation level by completely specifying their δ function (or
δ relation for NDTMs) in a tabular form as in Figure 2 or diagrammatic form as in Figure 4. After gaining
sufficient expertise with Turing machines, we will allow them to be specified at the high level through pseudo-
code or precise English narratives. When resorting to high-level descriptions, the specification writer must strive
to ensure sufficient clarity so that a reader can, in principle, reconstruct an implementation level description if
necessary.

4.1 Examples illustrating TM concepts and conventions

Illustration 4.1 Consider the Turing machine with a doubly-infinite tape M = (Q,Σ,Γ, δ, q0, B, F), where
Q = {q0, qa}, Σ = {0, 1}, Γ = {0, 1, B}, F = {qa}, and δ is as below:

δ(q0, 0) = (q0, 0, L)

δ(q0, 1) = (q0, 1, L)

δ(q0, B) = (q0, B, L).

This TM will not stop running - it will keep moving left (even this is called “looping”). Its language is ∅.

Illustration 4.2 Now consider changing δ to the following:

δ(q0, 0) = (qa, 0, L)

4

δ(q0, 1) = (qa, 1, L)

δ(q0, B) = (qa,B, L).

Now the language of this Turing machine is Σ∗. Notice that we need not specify moves for state qa for input B.
In other words, this Turing machine will move one step to the left and get “stuck” in state qa which is accepting.

Illustration 4.3 Suppose the entries for (qa,1,L) as well as (qa,B,L) are removed from the transition table
given in Illustration 4.2. The language of this Turing machine will then be 0(0 + 1)∗. This is because:

• Neither δ(q0, 1) nor δ(q0, B) is specified—hence, the input has to begin with a 0.

• State qa accepts everything. Hence, (0 + 1)∗ can follow.

q0 q1 q2 q3 q4 q5 q6

--

q0 | - | a; X, R| - | - | Y; Y, R| - | B; B, R|

|---

q1 | - | a; a, R| b; Y, R| - | - | - | - |

| - | Y; Y, R| - | - | - | - | - |

|---

q2 | - | - | Z; Z, R| c; Z, L| - | - | - |

| - | - | b; b, R| - | - | - | - |

|---

q3 | X; X, R| - | - | b; b, L| - | - | - |

| - | - | - | Y; Y, L| - | - | - |

| - | - | - | a; a, L| - | - | - |

| - | - | - | Z; Z, L| - | - | - |

| - | - | - | c; c, L| - | - | - |

|---

q4 | - | - | - | - | Y; Y, R| Z; Z, R| - |

|---

q5 | - | - | - | - | - | Z; Z, R| B; B, R|

|---

q6 | - | - | - | - | - | - | - |

--

Figure 2: A TM for {anbncn | n ≥ 0}, with start state q0, final state q6, and moves occurring from the
row-states to column-states

4.1.1 A Turing machine for anbncn

A Turing machine that recognizes Lanbncn = {anbncn | n ≥ 0} is given in Figure 2 in the JFLAP tool’s
saved-table syntax. The algorithm implemented is one of turning a’s into X’s, b’s into Y’s, and c’s into Z’s. Here
is an execution on aabbcc:

• We start in state q0 where we seek an a, changing it to an X when we see one, and at the same time
entering state q1.

• In q1, we skip over a’s going right, while staying in q1. Upon encountering a b, we change it to a Y, and
move over to state q2.

5

��

��

��

�������

���������

��

�������

�������

�������

��

�������

�������

�������

��

�������
�������

�������

��

�������

�������

�������

�������

�������
�������

�������

�������

�������

�������

��
�������

�������

�������

��
�������

�������

�������

���

�������

�������

�������

�������

�������

Figure 3: A Turing machine for w#w

• In q2, we move over b’s going right, until we encounter a c, turning it into a Z, and then move over to
state q3, and start moving in the left (L) direction.

• Notice that in q3, we keep moving left upon seeing any one of b, Y, a, Z, or c, and stop only when
we see an X. Then we sweep over the input once again.

In q0, encountering an X is impossible (why?). Also notice that we explicitly decode the B (blank) input case
in the q0 state. While in q0, encountering a Z is impossible. We may, however, encounter a Y (e.g., consider the
input ‘abc’ which would be changed to XY Z; and then in state q3, we would skip over the X and be in state
q0 facing a Y). The reader is invited to argue that this DTM is correct with respect to the advertised language
Lanbncn .

4.2 A DTM for w#w

In Figure 3, we provide a deterministic Turing machine for the language of strings of the form w#w, where
w ∈ Σ∗. Notice how the presence of # allows the midpoint to be deterministically located. The Turing machine
basically hovers to either side of #, scoring off matching characters.

5 NDTMs

An NDTM is a Turing machine with nondeterminism in its finite-state control, much like we have seen for
earlier machine types such as PDAs. To motivate the incorporation of nondeterminism into Turing machines,
consider a problem such as determining whether an undirected graph G has a clique (a completely connected

6

subgraph) of k nodes.1 No efficient algorithm for this problem is known: all known algorithms have a worst-case
exponential time complexity. Computer scientists have found that there exist thousands of problems such as this
that arise in many practical contexts. They have not yet found a method to construct a polynomial algorithm
for these problems. However, they have discovered another promising approach:

They have found a way to formally define a class called “NP-complete” such that finding a polynomial
algorithm for even one of the problems in the NP-complete class will allow one to find a polynomial
algorithm for all of the problems in the NP-complete class. Furthermore, most of these thousands
of problems that have confounded scientists have been shown to belong to the NP-complete class.

In short, scientists now have the strong hope of resorting to the maxim “solving one implies solving all,”
meaning solving even one NP-complete problem using a polynomial-time algorithm will provide a polynomial-
time algorithm for the thousands of known NP-complete problems.

The aforesaid techniques rely on measuring the runtime of nondeterministic algorithms in a certain way,
briefly described as follows:

If an NDTM can solve a certain problem X in polynomial-time, then the problem belongs to the
class NP. If, in addition, problem X belongs to the NP-hard class, then this combination (being in
NP and NP-hard) ensures that X is in the NP-complete class. X belonging to the NP-hard class
means that ever problem in NP has a polynomial transformation (mapping reduction) to X.

5.1 Guess and check

While all this may sound bizarre, the fundamental ideas are quite simple. The crux of the matter is that many
problems can be solved by the “guess and check” approach. For instance, finding the prime factors of very
large numbers is hard. In Pratt’s 1976 paper, an interesting observation is provided: it was conjectured by
Mersenne2 that 267 − 1 is prime. This conjecture remained open for two centuries until Frank Cole showed,
in 1903, that it wasn’t; in fact, 267 − 1 = 193707721 × 761838257287. Therefore, if we could somehow have
guessed that 193707721 and 761838257287 are the factors of 267 − 1, then checking the result would have been
extremely easy! The surprising thing is that there are two gradations of “difficulty” among problems for which
only exponential algorithms seem to exist:

• those for which short guesses exist, and checking the guesses is easy, and

• those for which the existence of short guesses is, as yet, unknown.

To sum up:

• If, for a problem p, we can generate a “short guess” and check the guess efficiently, then p belongs to the
class NP. Clique is in NP because a “guess” will be short (simply write out k of the graph nodes) and the
“check” is easy (see if these nodes include a k-clique).

• If a problem is NP-complete, it is believed to be unlikely that it will have a polynomial algorithm, although
this issue is open.

1If you walk into a room full of people, and imagine drawing a graph of who knows each other mutually, then a k-clique exists
wherever all pairs within a group of k people know each other. Whether there exists a group of such “tight-knit” people is,
essentially, the clique problem.

2Prime numbers of the form 2p−1 are known as Mersenne primes. The 42nd known Mersenne prime was discovered on February
18, 2005 and is 225964951 − 1, having 7,816,230 decimal digits !!

7

• Problems for which the guesses are not short, and also checking guesses is not easy, do not belong to NP.
Hence, these problems are thought to be much harder to solve.

For instance, Clique is the problem: “the given graph does not have a k-clique.” There is no known way to
produce a succinct guess of a solution for this problem, let alone check the guess efficiently. Every purported
solution that a graph does not have a k-clique seems to warrant providing a guess of a solution of the form,
“this set of k nodes does not span a clique; neither does this other set of k nodes; etc. etc.” This may, however,
end up enumerating all k-node combinations, which are exponential in number.

NDTMs are machines that make the study of complexity theory in the above-listed manner possible. Their
use in defining complexity-classes such as NP-hard and NP-complete forms the main hope for finding efficient
algorithms for thousands of naturally occurring NP-complete problems—or to prove that such algorithms cannot
exist.

5.2 An NDTM for ww

In Figure 4, we provide a nondeterministic Turing machine for the language of strings of the form ww, where
w ∈ Σ∗. Letter ‘S’ in the edge from q0 to q2 means that the head stays where it is (can be simulated by an
R followed by an L). This TM has to “guess” the midpoint; this happens in the initial nondeterministic loop
situated at state q2. Notice that the Turing machine can stay in q2, skipping over the 0s and 1s or exit to state
q3, replacing a 0 with an X or a 1 with a Y. This is how the Turing machine decides the midpoint; after this
step, the Turing machine zigzags and tries to match and score off around the assumed midpoint. Any wrong
guess causes this check phase to fail. One guess is guaranteed to win if, indeed, the input is of the form ww.

The animation of this NDTM in action using JFLAP would be highly intuitive, and the reader is strongly
urged to do so.

6 Simulations

We show that having multiple tapes or having nondeterminism does not change the inherent power of a Turing
machine.

6.1 Multi-tape vs. single-tape Turing machines

A k-tape Turing machine simply maintains k instantaneous descriptions. In each step, its δ function specifies
how each ID evolves. One can simulate this behavior on a single tape Turing machine by placing the k logical
tapes as segments, end-to-end, on a single actual tape, and also remembering where the k tape heads are
through “dots” kept on each segment. One step of a k-tape Turing machine now becomes a series of k activities
conducted one after the other on the k tape segments.

6.2 Nondeterministic Turing machines

A nondeterministic Turing machine can be conveniently simulated on a single tape deterministic Turing machine.
However, it is much more convenient to explain how a nondeterministic Turing machine can be simulated on
a multi-tape deterministic Turing machine. For the ease of exposition, we will carry this explanation out with
respect to the example given in Figure 4.

We will employ a 3-tape deterministic Turing machine to simulate the NDTM in Figure 4 (hereafter called
ww ndtm). The first tape maintains a read-only copy of the initial input string given to ww ndtm. We call it

8

��

���

��

�������

��

�������
�������

�������
�������

��

�������
�������

�������
�������

��

�������

��

�������

��

�������

��

�������

��

�������

���

�������
�������

�������
�������
�������
�������

���

�������

�������
�������
�������
�������

���

�������

��

�������

�������
�������
�������
�������

���

�������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

�������

�������
�������

Figure 4: A Nondeterministic Turing machine for ww. Letter ‘S’ means that the head stays where it is

9

the input tape. The second tape maintains a tree path in the nondeterministic computation tree of ww ndtm.
We call it the tree path tape. The third tape is the “working tape.”

6.2.1 Tree path conventions

Notice that state q2 is the only nondeterministic state in ww ndtm; and hence, the computation tree of ww ndtm
will have a binary nondeterministic split every so often—whenever the nondeterminism in q2 is invoked. The
tree paths in ww ndtm can be specified as follows, with the associated computations shown next to it:

ε—the empty computation beginning at q0,

0—the computation q0→ q1 of length 1,

1—the computation q0→ q2,

1, 0—the computation q0→ q2→ q2, and

1, 1—the computation q0→ q2→ q3.

We will uniformly use the 0 path for a “self” loop (if any), and 1 for an exit path; example: 1, 0 and 1, 1
above. The only exception to this convention is at state q4 where there are three exits, and we can number
them 0, 1, and 2, going left to right. Therefore, note that the tree path 1,1,1,4,0 refers to the march q0, q2, q3,
q4, q13, and back to q13. Notice that we do not have a path 0, 0 or 0, 1, as state q1 has no successor. When
we require the next path in numeric order to be generated below, we skip over such paths which do not exist in
the computation tree, and instead go to the next one in numeric order.

6.3 The Simulation itself

Here is how the simulation proceeds, with the second tape (tree path tape) containing ε:

• If the machine has accepted, accept and halt.

• Copy the first (input) tape to the third (working) tape.

• Generate the next tree path in numeric order on the tree path tape.

• Pursue the δ function of the NDTM according to the tree path specified in the tree path tape, making
the required changes to the working tape. If, at any particular point, the tree path does not exist or the
symbol under the TM tape head does not match what the δ function is forced to look, move on to the
next option in the tree path enumeration.

• Repeat the above steps.

For example, if the input 0, 1, 0, 1 is given on the input tape, the simulation will take several choices, all of which
will fail except the one that picks the correct midpoint and checks around it. In particular, note that in state
q2, for input string 0, 1, 0, 1, the self-loop option can be exercised at most three times; after four self-loop turns,
the Turing machine is faced with a blank on the tape and gets stuck (rejects). The outcome of this simulation
is that

the given NDTM accepts ww if and only if the DTM that simulates the NDTM as described above
accepts.

10

The astute reader will, of course, have noticed that we are walking the exponential computation tree of the
nondeterministic Turing machine repeatedly. In fact, we are not even performing a breadth-first search (which
would have been the first algorithm thought of by the reader) because

• Performing breadth-first search (BFS) requires maintaining the frontier

• Even after the extra effort towards maintaining a BFS frontier, the overall gain is not worth it: we
essentially might achieve an O(2n) computation instead of an O(2n+1) computation.

11

	Turing/Church Thesis
	Formal Definition of a Turing machine
	Two stacks+control = Turing machine

	Acceptance, Halting, Rejection
	``Acceptance'' of a TM closely examined
	Instantaneous descriptions

	Examples
	Examples illustrating TM concepts and conventions
	A Turing machine for an bn cn

	A DTM for w#w

	NDTMs
	Guess and check
	An NDTM for ww

	Simulations
	Multi-tape vs. single-tape Turing machines
	Nondeterministic Turing machines
	Tree path conventions

	The Simulation itself

